当前位置: 首页>>代码示例>>Python>>正文


Python numpy.NINF属性代码示例

本文整理汇总了Python中numpy.NINF属性的典型用法代码示例。如果您正苦于以下问题:Python numpy.NINF属性的具体用法?Python numpy.NINF怎么用?Python numpy.NINF使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在numpy的用法示例。


在下文中一共展示了numpy.NINF属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_is_inf

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def test_is_inf(self):
    if legacy_opset_pre_ver(10):
      raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format(
          defs.onnx_opset_version()))
    input = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf],
                     dtype=np.float32)
    expected_output = {
        "node_def": np.isinf(input),
        "node_def_neg_false": np.isposinf(input),
        "node_def_pos_false": np.isneginf(input)
    }
    node_defs = {
        "node_def":
            helper.make_node("IsInf", ["X"], ["Y"]),
        "node_def_neg_false":
            helper.make_node("IsInf", ["X"], ["Y"], detect_negative=0),
        "node_def_pos_false":
            helper.make_node("IsInf", ["X"], ["Y"], detect_positive=0)
    }
    for key in node_defs:
      output = run_node(node_defs[key], [input])
      np.testing.assert_equal(output["Y"], expected_output[key]) 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:24,代码来源:test_node.py

示例2: test_is_inf

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def test_is_inf(self):
    if legacy_opset_pre_ver(10):
      raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format(
          defs.onnx_opset_version()))
    inp = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf],
                   dtype=np.float32)
    expected_output = np.isinf(inp)
    node_def = helper.make_node("IsInf", ["X"], ["Y"])
    graph_def = helper.make_graph(
        [node_def],
        name="test_unknown_shape",
        inputs=[
            helper.make_tensor_value_info("X", TensorProto.FLOAT, [None]),
        ],
        outputs=[helper.make_tensor_value_info("Y", TensorProto.BOOL, [None])])
    tf_rep = onnx_graph_to_tensorflow_rep(graph_def)
    output = tf_rep.run({"X": inp})
    np.testing.assert_equal(output["Y"], expected_output) 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:20,代码来源:test_dynamic_shape.py

示例3: ComputeEnabledAABB

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def ComputeEnabledAABB(kinbody):
    """
    Returns the AABB of the enabled links of a KinBody.

    @param kinbody: an OpenRAVE KinBody
    @returns: AABB of the enabled links of the KinBody
    """
    from numpy import NINF, PINF
    from openravepy import AABB

    min_corner = numpy.array([PINF] * 3)
    max_corner = numpy.array([NINF] * 3)

    for link in kinbody.GetLinks():
        if link.IsEnabled():
            link_aabb = link.ComputeAABB()
            center = link_aabb.pos()
            half_extents = link_aabb.extents()
            min_corner = numpy.minimum(center - half_extents, min_corner)
            max_corner = numpy.maximum(center + half_extents, max_corner)

    center = (min_corner + max_corner) / 2.
    half_extents = (max_corner - min_corner) / 2.
    return AABB(center, half_extents) 
开发者ID:personalrobotics,项目名称:prpy,代码行数:26,代码来源:util.py

示例4: test_constants

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def test_constants():
    assert chainerx.Inf is numpy.Inf
    assert chainerx.Infinity is numpy.Infinity
    assert chainerx.NAN is numpy.NAN
    assert chainerx.NINF is numpy.NINF
    assert chainerx.NZERO is numpy.NZERO
    assert chainerx.NaN is numpy.NaN
    assert chainerx.PINF is numpy.PINF
    assert chainerx.PZERO is numpy.PZERO
    assert chainerx.e is numpy.e
    assert chainerx.euler_gamma is numpy.euler_gamma
    assert chainerx.inf is numpy.inf
    assert chainerx.infty is numpy.infty
    assert chainerx.nan is numpy.nan
    assert chainerx.newaxis is numpy.newaxis
    assert chainerx.pi is numpy.pi 
开发者ID:chainer,项目名称:chainer,代码行数:18,代码来源:test_constants.py

示例5: normalize

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def normalize(v):
    if isinstance(v, numpy.bool_):
        return bool(v)
    elif isinstance(v, numpy.ndarray):
        return [normalize(item) for item in v]
    elif v == numpy.NaN:
        return "NaN"
    elif v == numpy.NINF:
        return "-Infinity"
    elif v == numpy.PINF:
        return "Infinity"
    elif isinstance(v, numpy.float):
        return float(v)
    elif isinstance(v, tuple):
        return list(v)
    else:
        return v 
开发者ID:wikimedia,项目名称:revscoring,代码行数:19,代码来源:util.py

示例6: _create_corpus_embed

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def _create_corpus_embed(self):
        """
            msg_embed: batch_size * max_n_days * max_n_msgs * msg_embed_size

            => corpus_embed: batch_size * max_n_days * corpus_embed_size
        """
        with tf.name_scope('corpus_embed'):
            with tf.variable_scope('u_t'):
                proj_u = self._linear(self.msg_embed, self.msg_embed_size, 'tanh', use_bias=False)
                w_u = tf.get_variable('w_u', shape=(self.msg_embed_size, 1), initializer=self.initializer)
            u = tf.reduce_mean(tf.tensordot(proj_u, w_u, axes=1), axis=-1)  # batch_size * max_n_days * max_n_msgs

            mask_msgs = tf.sequence_mask(self.n_msgs_ph, maxlen=self.max_n_msgs, dtype=tf.bool, name='mask_msgs')
            ninf = tf.fill(tf.shape(mask_msgs), np.NINF)
            masked_score = tf.where(mask_msgs, u, ninf)
            u = neural.softmax(masked_score)  # batch_size * max_n_days * max_n_msgs
            u = tf.where(tf.is_nan(u), tf.zeros_like(u), u)  # replace nan with 0.0

            u = tf.expand_dims(u, axis=-2)  # batch_size * max_n_days * 1 * max_n_msgs
            corpus_embed = tf.matmul(u, self.msg_embed)  # batch_size * max_n_days * 1 * msg_embed_size
            corpus_embed = tf.reduce_mean(corpus_embed, axis=-2)  # batch_size * max_n_days * msg_embed_size
            self.corpus_embed = tf.nn.dropout(corpus_embed, keep_prob=1-self.dropout_ce, name='corpus_embed') 
开发者ID:yumoxu,项目名称:stocknet-code,代码行数:24,代码来源:Model.py

示例7: lr_predict

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def lr_predict(self, BV, data, num_sub):
        BV = np.asarray(BV)
        data = np.asarray(data)

        fs = data.dot(BV)
        n = data.shape[0]
        n_class = int(fs.shape[1] / num_sub)
        pres = np.ones((n, n_class)) * np.NINF
        for j in range(num_sub):
            f = fs[:, j: fs.shape[1]: num_sub]
            assert (np.all(f.shape == pres.shape))
            pres = np.fmax(pres, f)
        labels = -np.ones((n, n_class - 1))
        for line in range(n_class - 1):
            gt = np.nonzero(pres[:, line] > pres[:, n_class - 1])[0]
            labels[gt, line] = 1
        return pres, labels 
开发者ID:NUAA-AL,项目名称:ALiPy,代码行数:19,代码来源:multi_label.py

示例8: _get_proposal_function

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def _get_proposal_function(self, model, space):

        # Define proposal function for multi-fidelity
        ei = ExpectedImprovement(model)

        def proposal_func(x):
            x_ = x[None, :]
            # Map to highest fidelity
            idx = np.ones((x_.shape[0], 1)) * self.high_fidelity

            x_ = np.insert(x_, self.target_fidelity_index, idx, axis=1)

            if space.check_points_in_domain(x_):
                val = np.log(np.clip(ei.evaluate(x_)[0], 0., np.PINF))
                if np.any(np.isnan(val)):
                    return np.array([np.NINF])
                else:
                    return val
            else:
                return np.array([np.NINF])

        return proposal_func 
开发者ID:amzn,项目名称:emukit,代码行数:24,代码来源:continuous_fidelity_entropy_search.py

示例9: _get_proposal_function

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def _get_proposal_function(self, model, space):

        # Define proposal function for multi-fidelity
        ei = ExpectedImprovement(model)

        def proposal_func(x):
            x_ = x[None, :]

            # Add information source parameter into array
            idx = np.ones((x_.shape[0], 1)) * self.target_information_source_index
            x_ = np.insert(x_, self.source_idx, idx, axis=1)

            if space.check_points_in_domain(x_):
                val = np.log(np.clip(ei.evaluate(x_)[0], 0., np.PINF))
                if np.any(np.isnan(val)):
                    return np.array([np.NINF])
                else:
                    return val
            else:
                return np.array([np.NINF])

        return proposal_func 
开发者ID:amzn,项目名称:emukit,代码行数:24,代码来源:entropy_search.py

示例10: test_df_rolling_corr

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def test_df_rolling_corr(self):
        all_data = [
            list(range(10)), [1., -1., 0., 0.1, -0.1],
            [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF],
            [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO]
        ]
        length = min(len(d) for d in all_data)
        data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)}
        df = pd.DataFrame(data)
        for d in all_data:
            other = pd.Series(d)
            self._test_rolling_corr(df, other)

        other_all_data = deepcopy(all_data) + [list(range(10))[::-1]]
        other_all_data[1] = [-1., 1., 0., -0.1, 0.1, 0.]
        other_length = min(len(d) for d in other_all_data)
        other_data = {n: d[:other_length] for n, d in zip(string.ascii_uppercase, other_all_data)}
        other = pd.DataFrame(other_data)

        self._test_rolling_corr(df, other) 
开发者ID:IntelPython,项目名称:sdc,代码行数:22,代码来源:test_rolling.py

示例11: test_df_rolling_cov

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def test_df_rolling_cov(self):
        all_data = [
            list(range(10)), [1., -1., 0., 0.1, -0.1],
            [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF],
            [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO]
        ]
        length = min(len(d) for d in all_data)
        data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)}
        df = pd.DataFrame(data)
        for d in all_data:
            other = pd.Series(d)
            self._test_rolling_cov(df, other)

        other_all_data = deepcopy(all_data) + [list(range(10))[::-1]]
        other_all_data[1] = [-1., 1., 0., -0.1, 0.1]
        other_length = min(len(d) for d in other_all_data)
        other_data = {n: d[:other_length] for n, d in zip(string.ascii_uppercase, other_all_data)}
        other = pd.DataFrame(other_data)

        self._test_rolling_cov(df, other) 
开发者ID:IntelPython,项目名称:sdc,代码行数:22,代码来源:test_rolling.py

示例12: value_bounds

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def value_bounds(self, point):
    """
    Returns the (lower_bound, upper_bound) tuple of a point implied by the reference set and the monotone relationship vector.
    Use it to improve and understand the reference set without triggering a MonotoneError.
    Returns np.inf as the second argument if there is no upper bound and np.NINF as the first argument if there is no lower bound.

    Required argument:
    point -- Point at which to assess upper and lower bounds.
    """
    padj = point/self.scale
    points_greater_than = filter(lambda x: np.allclose(x,padj) or self.__monotone_rel__(x,padj)==1, self.points.keys())
    points_less_than = filter(lambda x: np.allclose(x,padj) or self.__monotone_rel__(padj,x)==1, self.points.keys())
    gtbound = np.inf if self.maxval is None else self.maxval
    ltbound = np.NINF if self.minval is None else self.minval
    for p in points_greater_than:
      gtbound = min(self.points[p],gtbound)
    for p in points_less_than:
      ltbound = max(self.points[p],ltbound)
    return ltbound, gtbound 
开发者ID:aothman,项目名称:hiscore,代码行数:21,代码来源:engine.py

示例13: _norm

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def _norm():
    def _impl(inputs, input_types):
        data = inputs[0]
        dtype = input_types[0]
        axis = None
        keepdims = False
        if len(inputs) > 3:
            axis = list(_infer_shape(inputs[2]))
            keepdims = bool(inputs[3])

        order = inputs[1]
        if order == np.inf:
            return _op.reduce.max(_op.abs(data), axis=axis, keepdims=keepdims)
        elif order == np.NINF:
            return _op.reduce.min(_op.abs(data), axis=axis, keepdims=keepdims)
        else:
            reci_order = _expr.const(1.0 / order, dtype=dtype)
            order = _expr.const(order)
            return _op.power(_op.reduce.sum(_op.power(_op.abs(data), order),
                                            axis=axis,
                                            keepdims=keepdims),
                             reci_order)
    return _impl 
开发者ID:apache,项目名称:incubator-tvm,代码行数:25,代码来源:pytorch.py

示例14: __init__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def __init__(self, word2index, index2word, argsDict, dataset,
                 data_generator, use_sourcelang=False, use_image=True):
        super(Callback, self).__init__()

        self.verbose = True
        self.filename = "weights.hdf5"
        self.save_best_only = True

        self.val_loss = []
        self.best_val_loss = np.inf

        self.val_metric = []
        self.best_val_metric = np.NINF

        self.word2index = word2index
        self.index2word = index2word
        self.args = argsDict

        # used to control early stopping on the validation data
        self.wait = 0
        self.patience = self.args.patience

        # needed by model.predict in generate_sentences
        self.use_sourcelang = use_sourcelang
        self.use_image = use_image

        # controversial assignment but it makes it much easier to
        # do early stopping based on metrics
        self.data_generator = data_generator

        # this results in two file handlers for dataset (here and
        # data_generator)
        if not dataset:
            logger.warn("No dataset given, using flickr8k")
            self.dataset = h5py.File("flickr8k/dataset.h5", "r")
        else:
            self.dataset = h5py.File("%s/dataset.h5" % dataset, "r")
        if self.args.source_vectors is not None:
            self.source_dataset = h5py.File("%s/dataset.h5" % self.args.source_vectors, "r") 
开发者ID:elliottd,项目名称:GroundedTranslation,代码行数:41,代码来源:Callbacks.py

示例15: test_any_ninf

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import NINF [as 别名]
def test_any_ninf(self):
        # atan2(+-y, -infinity) returns +-pi for finite y > 0.
        assert_almost_equal(ncu.arctan2(1, np.NINF),  np.pi)
        assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:6,代码来源:test_umath.py


注:本文中的numpy.NINF属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。