本文整理汇总了Python中mpi4py.MPI属性的典型用法代码示例。如果您正苦于以下问题:Python mpi4py.MPI属性的具体用法?Python mpi4py.MPI怎么用?Python mpi4py.MPI使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类mpi4py
的用法示例。
在下文中一共展示了mpi4py.MPI属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mpi_fork
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def mpi_fork(n, extra_mpi_args=[]):
"""Re-launches the current script with workers
Returns "parent" for original parent, "child" for MPI children
"""
if n <= 1:
return "child"
if os.getenv("IN_MPI") is None:
env = os.environ.copy()
env.update(
MKL_NUM_THREADS="1",
OMP_NUM_THREADS="1",
IN_MPI="1"
)
# "-bind-to core" is crucial for good performance
args = ["mpirun", "-np", str(n)] + \
extra_mpi_args + \
[sys.executable]
args += sys.argv
subprocess.check_call(args, env=env)
return "parent"
else:
install_mpi_excepthook()
return "child"
示例2: make_mujoco_env
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def make_mujoco_env(env_id, seed, reward_scale=1.0):
"""
Create a wrapped, monitored gym.Env for MuJoCo.
"""
rank = MPI.COMM_WORLD.Get_rank()
myseed = seed + 1000 * rank if seed is not None else None
set_global_seeds(myseed)
env = gym.make(env_id)
logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank))
env = Monitor(env, logger_path, allow_early_resets=True)
env.seed(seed)
if reward_scale != 1.0:
from baselines.common.retro_wrappers import RewardScaler
env = RewardScaler(env, reward_scale)
return env
示例3: make_vec_env
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0):
"""
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
"""
if wrapper_kwargs is None: wrapper_kwargs = {}
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
def make_env(rank): # pylint: disable=C0111
def _thunk():
env = make_atari(env_id) if env_type == 'atari' else gym.make(env_id)
env.seed(seed + 10000*mpi_rank + rank if seed is not None else None)
env = Monitor(env,
logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(rank)),
allow_early_resets=True)
if env_type == 'atari': return wrap_deepmind(env, **wrapper_kwargs)
elif reward_scale != 1: return RewardScaler(env, reward_scale)
else: return env
return _thunk
set_global_seeds(seed)
if num_env > 1: return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)])
else: return DummyVecEnv([make_env(start_index)])
示例4: make_vec_env
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0, gamestate=None):
"""
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
"""
if wrapper_kwargs is None: wrapper_kwargs = {}
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
seed = seed + 10000 * mpi_rank if seed is not None else None
def make_thunk(rank):
return lambda: make_env(
env_id=env_id,
env_type=env_type,
subrank = rank,
seed=seed,
reward_scale=reward_scale,
gamestate=gamestate,
wrapper_kwargs=wrapper_kwargs
)
set_global_seeds(seed)
if num_env > 1:
return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)])
else:
return DummyVecEnv([make_thunk(start_index)])
示例5: make_env
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate=None, wrapper_kwargs={}):
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
if env_type == 'atari':
env = make_atari(env_id)
elif env_type == 'retro':
import retro
gamestate = gamestate or retro.State.DEFAULT
env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate)
else:
env = gym.make(env_id)
env.seed(seed + subrank if seed is not None else None)
env = Monitor(env,
logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(subrank)),
allow_early_resets=True)
if env_type == 'atari':
env = wrap_deepmind(env, **wrapper_kwargs)
elif env_type == 'retro':
env = retro_wrappers.wrap_deepmind_retro(env, **wrapper_kwargs)
if reward_scale != 1:
env = retro_wrappers.RewardScaler(env, reward_scale)
return env
示例6: _add_hook_if_enabled
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def _add_hook_if_enabled():
# An MPI runtime is expected to kill all of its child processes
# if one of them exits abnormally or without calling `MPI_Finalize()`.
# However, when a Python program run on `mpi4py`, the MPI runtime
# often fails to detect a process failure, and the rest of the processes
# hang infinitely.
# It is problematic especially when you run ChainerMN programs on a cloud
# environment, on which you are charged on time basis.
# See https://github.com/chainer/chainermn/issues/236 for more discussion.
#
# To activate this handler, set CHAINERMN_FORCE_ABORT_ON_EXCEPTION
# to a non-empty value.
# Note that you need to pass an argument to mpiexec (-x for Open MPI)
# to activate the handler in all processes.
var = os.environ.get('CHAINERMN_FORCE_ABORT_ON_EXCEPTION')
if var is not None and len(var) > 0:
add_hook()
示例7: test_mvpa_voxel_selection
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def test_mvpa_voxel_selection():
data = prng.rand(5, 5, 5, 8).astype(np.float32)
# all MPI processes read the mask; the mask file is small
mask = np.ones([5, 5, 5], dtype=np.bool)
mask[0, 0, :] = False
labels = [0, 1, 0, 1, 0, 1, 0, 1]
# 2 subjects, 4 epochs per subject
sl = Searchlight(sl_rad=1)
mvs = MVPAVoxelSelector(data, mask, labels, 2, sl)
# for cross validation, use SVM with precomputed kernel
clf = svm.SVC(kernel='rbf', C=10, gamma='auto')
result_volume, results = mvs.run(clf)
if MPI.COMM_WORLD.Get_rank() == 0:
output = []
for tuple in results:
if tuple[1] > 0:
output.append(int(8*tuple[1]))
expected_output = [6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4,
4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 1]
assert np.allclose(output, expected_output, atol=1), \
'voxel selection via SVM does not provide correct results'
示例8: train
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def train(env, seed, policy_fn, reward_giver, dataset, algo,
g_step, d_step, policy_entcoeff, num_timesteps, save_per_iter,
checkpoint_dir, log_dir, pretrained, BC_max_iter, task_name=None):
pretrained_weight = None
if pretrained and (BC_max_iter > 0):
# Pretrain with behavior cloning
from baselines.gail import behavior_clone
pretrained_weight = behavior_clone.learn(env, policy_fn, dataset,
max_iters=BC_max_iter)
if algo == 'trpo':
from baselines.gail import trpo_mpi
# Set up for MPI seed
rank = MPI.COMM_WORLD.Get_rank()
if rank != 0:
logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env.seed(workerseed)
trpo_mpi.learn(env, policy_fn, reward_giver, dataset, rank,
pretrained=pretrained, pretrained_weight=pretrained_weight,
g_step=g_step, d_step=d_step,
entcoeff=policy_entcoeff,
max_timesteps=num_timesteps,
ckpt_dir=checkpoint_dir, log_dir=log_dir,
save_per_iter=save_per_iter,
timesteps_per_batch=1024,
max_kl=0.01, cg_iters=10, cg_damping=0.1,
gamma=0.995, lam=0.97,
vf_iters=5, vf_stepsize=1e-3,
task_name=task_name)
else:
raise NotImplementedError
示例9: install_mpi_excepthook
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def install_mpi_excepthook():
import sys
from mpi4py import MPI
old_hook = sys.excepthook
def new_hook(a, b, c):
old_hook(a, b, c)
sys.stdout.flush()
sys.stderr.flush()
MPI.COMM_WORLD.Abort()
sys.excepthook = new_hook
示例10: mpi_fork
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def mpi_fork(n):
"""Re-launches the current script with workers
Returns "parent" for original parent, "child" for MPI children
"""
if n <= 1:
return "child"
if os.getenv("IN_MPI") is None:
env = os.environ.copy()
env.update(
MKL_NUM_THREADS="1",
OMP_NUM_THREADS="1",
IN_MPI="1"
)
# "-bind-to core" is crucial for good performance
args = [
"mpirun",
"-np",
str(n),
"-bind-to",
"core",
sys.executable
]
args += sys.argv
subprocess.check_call(args, env=env)
return "parent"
else:
install_mpi_excepthook()
return "child"
示例11: reshape_for_broadcasting
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def reshape_for_broadcasting(source, target):
"""Reshapes a tensor (source) to have the correct shape and dtype of the target
before broadcasting it with MPI.
"""
dim = len(target.get_shape())
shape = ([1] * (dim-1)) + [-1]
return tf.reshape(tf.cast(source, target.dtype), shape)
示例12: parse_args
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def parse_args():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env-id', type=str, default='HalfCheetah-v1')
boolean_flag(parser, 'render-eval', default=False)
boolean_flag(parser, 'layer-norm', default=True)
boolean_flag(parser, 'render', default=False)
boolean_flag(parser, 'normalize-returns', default=False)
boolean_flag(parser, 'normalize-observations', default=True)
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--critic-l2-reg', type=float, default=1e-2)
parser.add_argument('--batch-size', type=int, default=64) # per MPI worker
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
boolean_flag(parser, 'popart', default=False)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--reward-scale', type=float, default=1.)
parser.add_argument('--clip-norm', type=float, default=None)
parser.add_argument('--nb-epochs', type=int, default=500) # with default settings, perform 1M steps total
parser.add_argument('--nb-epoch-cycles', type=int, default=20)
parser.add_argument('--nb-train-steps', type=int, default=50) # per epoch cycle and MPI worker
parser.add_argument('--nb-eval-steps', type=int, default=100) # per epoch cycle and MPI worker
parser.add_argument('--nb-rollout-steps', type=int, default=100) # per epoch cycle and MPI worker
parser.add_argument('--noise-type', type=str, default='adaptive-param_0.2') # choices are adaptive-param_xx, ou_xx, normal_xx, none
parser.add_argument('--num-timesteps', type=int, default=None)
boolean_flag(parser, 'evaluation', default=False)
args = parser.parse_args()
# we don't directly specify timesteps for this script, so make sure that if we do specify them
# they agree with the other parameters
if args.num_timesteps is not None:
assert(args.num_timesteps == args.nb_epochs * args.nb_epoch_cycles * args.nb_rollout_steps)
dict_args = vars(args)
del dict_args['num_timesteps']
return dict_args
示例13: main
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def main(custom_args=[]):
# configure logger, disable logging in child MPI processes (with rank > 0)
arg_parser = common_arg_parser()
args, unknown_args = arg_parser.parse_known_args()
extra_args = {}
for arg in custom_args:
if arg in vars(args).keys():
vars(args)[arg] = custom_args[arg]
else:
extra_args[arg] = custom_args[arg]
#extra_args = {k: parse(v) for k,v in parse_unknown_args(unknown_args).items()}
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
rank = 0
logger.configure(format_strs = ['stdout', 'tensorboard'])
else:
logger.configure(format_strs = ['stdout', 'tensorboard'])
rank = MPI.COMM_WORLD.Get_rank()
model, _ = train(args, extra_args)
if args.save_path is not None and rank == 0:
save_path = osp.expanduser(args.save_path)
model.save(save_path)
if args.play:
logger.log("Running trained model")
env = build_env(args)
obs = env.reset()
while True:
actions = model.step(obs)[0]
obs, _, done, _ = env.step(actions)
env.render()
done = done.any() if isinstance(done, np.ndarray) else done
if done:
obs = env.reset()
示例14: make_atari_env
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
"""
Create a wrapped, monitored SubprocVecEnv for Atari.
"""
if wrapper_kwargs is None: wrapper_kwargs = {}
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
def make_env(rank): # pylint: disable=C0111
def _thunk():
env = make_atari(env_id)
env.seed(seed + 10000*mpi_rank + rank if seed is not None else None)
env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(rank)))
return wrap_deepmind(env, **wrapper_kwargs)
return _thunk
set_global_seeds(seed)
return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)])
示例15: __init__
# 需要导入模块: import mpi4py [as 别名]
# 或者: from mpi4py import MPI [as 别名]
def __init__(self, use_mpi):
self.use_mpi = use_mpi
# Setup
if self.use_mpi:
if not mpi_available:
raise RuntimeError('ChainerMN required for MPI but cannot be imported. Abort.')
comm = chainermn.create_communicator(FLAGS.comm_name)
if comm.mpi_comm.rank == 0:
print('==========================================')
print('Num process (COMM_WORLD): {}'.format(MPI.COMM_WORLD.Get_size()))
print('Communcator name: {}'.format(FLAGS.comm_name))
print('==========================================')
fleet_size = MPI.COMM_WORLD.Get_size()
device = comm.intra_rank
else:
fleet_size = 1
comm = None
device = FLAGS.gpu
self.fleet_size, self.comm, self.device = fleet_size, comm, device
self.is_master = is_master = not self.use_mpi or (self.use_mpi and comm.rank == 0)
# Early works
if is_master:
record_setting(FLAGS.out)
# Show effective hps
effective_hps = {
'is_master': self.is_master,
'stage_interval': self.stage_interval,
'dynamic_batch_size': self.dynamic_batch_size
}
self.print_log('Effective hps: {}'.format(effective_hps))