本文整理汇总了Python中model.utils.config.cfg.ANCHOR_SCALES属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.ANCHOR_SCALES属性的具体用法?Python cfg.ANCHOR_SCALES怎么用?Python cfg.ANCHOR_SCALES使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类model.utils.config.cfg
的用法示例。
在下文中一共展示了cfg.ANCHOR_SCALES属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_SCALES [as 别名]
def __init__(self, din):
super(_RPN_FPN, self).__init__()
self.din = din # get depth of input feature map, e.g., 512
self.anchor_ratios = cfg.ANCHOR_RATIOS
self.anchor_scales = cfg.ANCHOR_SCALES
self.feat_stride = cfg.FEAT_STRIDE[0]
# define the convrelu layers processing input feature map
self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)
# define bg/fg classifcation score layer
# self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
self.nc_score_out = 1 * len(self.anchor_ratios) * 2 # 2(bg/fg) * 3 (anchor ratios) * 1 (anchor scale)
self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)
# define anchor box offset prediction layer
# self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
self.nc_bbox_out = 1 * len(self.anchor_ratios) * 4 # 4(coords) * 3 (anchors) * 1 (anchor scale)
self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)
# define proposal layer
self.RPN_proposal = _ProposalLayer_FPN(self.feat_stride, self.anchor_scales, self.anchor_ratios)
# define anchor target layer
self.RPN_anchor_target = _AnchorTargetLayer_FPN(self.feat_stride, self.anchor_scales, self.anchor_ratios)
self.rpn_loss_cls = 0
self.rpn_loss_box = 0
示例2: __init__
# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_SCALES [as 别名]
def __init__(self, din):
super(_RPN, self).__init__()
self.din = din # get depth of input feature map, e.g., 512
self.anchor_scales = cfg.ANCHOR_SCALES
self.anchor_ratios = cfg.ANCHOR_RATIOS
self.feat_stride = cfg.FEAT_STRIDE[0]
# define the convrelu layers processing input feature map
self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)
# define bg/fg classifcation score layer
self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)
# define anchor box offset prediction layer
self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)
# define proposal layer
self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
# define anchor target layer
self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
self.rpn_loss_cls = 0
self.rpn_loss_box = 0
示例3: __init__
# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_SCALES [as 别名]
def __init__(self, din):
super(_RPN, self).__init__()
self.din = din # get depth of input feature map, e.g., 512
self.anchor_scales = cfg.ANCHOR_SCALES
self.anchor_ratios = cfg.ANCHOR_RATIOS
self.feat_stride = cfg.FEAT_STRIDE[0]
# define the convrelu layers processing input feature map
self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)
# define bg/fg classifcation score layer
self.nc_score_out = len(self.anchor_scales) * len(
self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)
# define anchor box offset prediction layer
self.nc_bbox_out = len(self.anchor_scales) * len(
self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)
# define proposal layer
self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales,
self.anchor_ratios)
# define anchor target layer
self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride,
self.anchor_scales,
self.anchor_ratios)
self.rpn_loss_cls = 0
self.rpn_loss_box = 0
示例4: __init__
# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_SCALES [as 别名]
def __init__(self, din):
super(_RPN, self).__init__()
self.din = din # get depth of input feature map, e.g., 512
self.anchor_scales = cfg.ANCHOR_SCALES
self.anchor_ratios = cfg.ANCHOR_RATIOS
self.feat_stride = cfg.FEAT_STRIDE[0]
# define the convrelu layers processing input feature map
self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)
# define bg/fg classifcation score layer
self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)
# define anchor box offset prediction layer
self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)
# define proposal layer
self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
# define anchor target layer
self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
self.rpn_loss_cls = 0
self.rpn_loss_box = 0
示例5: __init__
# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_SCALES [as 别名]
def __init__(self, din):
super(_RPN, self).__init__()
self.din = din # get depth of input feature map, e.g., 512
self.anchor_scales = cfg.ANCHOR_SCALES
self.anchor_ratios = cfg.ANCHOR_RATIOS
self.feat_stride = cfg.FEAT_STRIDE[0]
# define the convrelu layers processing input feature map
# self.mix_Conv = nn.Sequential(
# nn.Conv2d(self.din, 512, 3, 1, 1, bias=True),
# nn.BatchNorm2d(512),
# nn.ReLU(inplace=True)
# )
self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)
# define bg/fg classifcation score layer
self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)
# define anchor box offset prediction layer
self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)
# define proposal layer
self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
# define anchor target layer
self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
self.rpn_loss_cls = 0
self.rpn_loss_box = 0
示例6: __init__
# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_SCALES [as 别名]
def __init__(self, din):
super(_RPN, self).__init__()
self.din = din # get depth of input feature map, e.g., 512
self.anchor_scales = [8, 16, 32] #cfg.ANCHOR_SCALES #[4, 8, 16, 32] #
self.anchor_ratios = cfg.ANCHOR_RATIOS
self.feat_stride = cfg.FEAT_STRIDE[0]
# define the convrelu layers processing input feature map
self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)
# define bg/fg classifcation score layer
self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)
# define anchor box offset prediction layer
self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)
# define proposal layer
self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
# define anchor target layer
self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)
self.rpn_loss_cls = 0
self.rpn_loss_box = 0