当前位置: 首页>>代码示例>>Python>>正文


Python cfg.ANCHOR_RATIOS属性代码示例

本文整理汇总了Python中model.utils.config.cfg.ANCHOR_RATIOS属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.ANCHOR_RATIOS属性的具体用法?Python cfg.ANCHOR_RATIOS怎么用?Python cfg.ANCHOR_RATIOS使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在model.utils.config.cfg的用法示例。


在下文中一共展示了cfg.ANCHOR_RATIOS属性的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_RPN_FPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        # self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.nc_score_out = 1 * len(self.anchor_ratios) * 2 # 2(bg/fg) * 3 (anchor ratios) * 1 (anchor scale)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        # self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
        self.nc_bbox_out = 1 * len(self.anchor_ratios) * 4 # 4(coords) * 3 (anchors) * 1 (anchor scale)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer_FPN(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer_FPN(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
开发者ID:guoruoqian,项目名称:cascade-rcnn_Pytorch,代码行数:31,代码来源:rpn_fpn.py

示例2: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_RPN, self).__init__()
        
        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
开发者ID:Feynman27,项目名称:pytorch-detect-to-track,代码行数:29,代码来源:rpn.py

示例3: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_RPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(
            self.anchor_ratios) * 2  # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(
            self.anchor_ratios) * 4  # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales,
                                           self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride,
                                                    self.anchor_scales,
                                                    self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
开发者ID:ucbdrive,项目名称:3d-vehicle-tracking,代码行数:34,代码来源:rpn.py

示例4: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_RPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2  # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4  # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
开发者ID:chengsq,项目名称:pytorch-lighthead,代码行数:29,代码来源:rpn.py

示例5: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_RPN, self).__init__()
        
        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        # self.mix_Conv = nn.Sequential(
        #         nn.Conv2d(self.din, 512, 3, 1, 1, bias=True),
        #         nn.BatchNorm2d(512),
        #         nn.ReLU(inplace=True)
        #     )
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)

        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
开发者ID:timy90022,项目名称:One-Shot-Object-Detection,代码行数:35,代码来源:rpn.py

示例6: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_RPN, self).__init__()
        
        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales =  [8, 16, 32] #cfg.ANCHOR_SCALES  #[4, 8, 16, 32] #
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
开发者ID:TKKim93,项目名称:DivMatch,代码行数:29,代码来源:rpn_origin.py

示例7: __init__

# 需要导入模块: from model.utils.config import cfg [as 别名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 别名]
def __init__(self, din):
        super(_Stereo_RPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = 1 * len(self.anchor_ratios) * 2 # 2(bg/fg) * 3 (anchor ratios) * 1 (anchor scale)
        self.RPN_cls_score = nn.Conv2d(512*2, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = 1 * len(self.anchor_ratios) * 6 # 6(coords) * 3 (anchors) * 1 (anchor scale)
        self.RPN_bbox_pred_left_right = nn.Conv2d(512*2, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box_left_right = 0 
开发者ID:HKUST-Aerial-Robotics,项目名称:Stereo-RCNN,代码行数:28,代码来源:stereo_rpn.py


注:本文中的model.utils.config.cfg.ANCHOR_RATIOS属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。