当前位置: 首页>>代码示例>>Python>>正文


Python cfg.RPN_CHANNELS属性代码示例

本文整理汇总了Python中model.config.cfg.RPN_CHANNELS属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.RPN_CHANNELS属性的具体用法?Python cfg.RPN_CHANNELS怎么用?Python cfg.RPN_CHANNELS使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在model.config.cfg的用法示例。


在下文中一共展示了cfg.RPN_CHANNELS属性的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _init_modules

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import RPN_CHANNELS [as 别名]
def _init_modules(self): 
    self._init_head_tail()

    # rpn
    self.rpn_net = nn.Conv2d(self._net_conv_channels, cfg.RPN_CHANNELS, [3, 3], padding=1)

    self.rpn_cls_score_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 2, [1, 1])
    
    self.rpn_bbox_pred_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 4, [1, 1])

    self.cls_score_net_fast = nn.Linear(self._fc7_channels, self._num_classes+1)
    self.bbox_pred_net_fast = nn.Linear(self._fc7_channels, (self._num_classes+1) * 4)


    self.cls_score_net = nn.Linear(self._fc7_channels, self._num_classes)  # between class
    self.bbox_pred_net = nn.Linear(self._fc7_channels, self._num_classes)  # between boxes

    self.init_weights() 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:20,代码来源:network.py

示例2: _region_proposal

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import RPN_CHANNELS [as 别名]
def _region_proposal(self, net_conv, is_training, initializer, suffix=''):
    rpn = slim.conv2d(net_conv, cfg.RPN_CHANNELS, [3, 3], trainable=is_training and cfg.STAGE_TYPE == 'rpn',
                      weights_initializer=initializer, scope='rpn_conv'+suffix)
    self._act_summaries.append(rpn)
    rpn_cls_score = slim.conv2d(rpn, self._num_anchors * 2, [1, 1], trainable=is_training and cfg.STAGE_TYPE == 'rpn',
                                weights_initializer=initializer,
                                padding='VALID', activation_fn=None, scope='rpn_cls_score'+suffix)
    # change it so that the score has 2 as its channel size
    rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape'+suffix)
    rpn_cls_prob_reshape = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob_reshape"+suffix)
    rpn_cls_pred = tf.argmax(tf.reshape(rpn_cls_score_reshape, [-1, 2]), axis=1, name="rpn_cls_pred"+suffix)
    rpn_cls_prob = self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob"+suffix)
    rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=is_training and cfg.STAGE_TYPE == 'rpn',
                                weights_initializer=initializer,
                                padding='VALID', activation_fn=None, scope='rpn_bbox_pred'+suffix)
    rois, roi_scores, rpn_scores = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, rpn_cls_score, 'TEST', 'rois'+suffix)

    self._predictions["rpn_cls_score_reshape"+suffix] = rpn_cls_score_reshape
    self._predictions["rpn_cls_prob"+suffix] = rpn_cls_prob
    self._predictions["rpn_cls_pred"+suffix] = rpn_cls_pred
    self._predictions["rpn_bbox_pred"+suffix] = rpn_bbox_pred
    self._predictions["rois"+suffix] = rois
    self._predictions["roi_scores" + suffix] = roi_scores
    self._predictions["rpn_scores" + suffix] = rpn_scores 
开发者ID:Li-Chengyang,项目名称:MSDS-RCNN,代码行数:26,代码来源:network.py

示例3: _init_modules

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import RPN_CHANNELS [as 别名]
def _init_modules(self):
    self._init_head_tail()

    # rpn
    self.rpn_net = nn.Conv2d(self._net_conv_channels, cfg.RPN_CHANNELS, [3, 3], padding=1)

    self.rpn_cls_score_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 2, [1, 1])

    self.rpn_bbox_pred_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 4, [1, 1])

    self.cls_score_net = nn.Linear(self._fc7_channels, self._num_classes)
    self.bbox_pred_net = nn.Linear(self._fc7_channels, self._num_classes * 4)

    self.init_weights() 
开发者ID:yxgeee,项目名称:pytorch-FPN,代码行数:16,代码来源:network.py

示例4: _region_proposal

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import RPN_CHANNELS [as 别名]
def _region_proposal(self, net_conv, is_training, initializer):
    rpn = slim.conv2d(net_conv, cfg.RPN_CHANNELS, [3, 3], trainable=is_training, weights_initializer=initializer,
                        scope="rpn_conv/3x3")
    self._act_summaries.append(rpn)
    rpn_cls_score = slim.conv2d(rpn, self._num_anchors * 2, [1, 1], trainable=is_training,
                                weights_initializer=initializer,
                                padding='VALID', activation_fn=None, scope='rpn_cls_score')
    # change it so that the score has 2 as its channel size
    rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape')
    rpn_cls_prob_reshape = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob_reshape")
    rpn_cls_pred = tf.argmax(tf.reshape(rpn_cls_score_reshape, [-1, 2]), axis=1, name="rpn_cls_pred")
    rpn_cls_prob = self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob")
    rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=is_training,
                                weights_initializer=initializer,
                                padding='VALID', activation_fn=None, scope='rpn_bbox_pred')
    if is_training:
      rois, roi_scores = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
      rpn_labels = self._anchor_target_layer(rpn_cls_score, "anchor")
      # Try to have a deterministic order for the computing graph, for reproducibility
      with tf.control_dependencies([rpn_labels]):
        rois, _ = self._proposal_target_layer(rois, roi_scores, "rpn_rois")
    else:
      if cfg.TEST.MODE == 'nms':
        rois, _ = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
      elif cfg.TEST.MODE == 'top':
        rois, _ = self._proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
      else:
        raise NotImplementedError

    self._predictions["rpn_cls_score"] = rpn_cls_score
    self._predictions["rpn_cls_score_reshape"] = rpn_cls_score_reshape
    self._predictions["rpn_cls_prob"] = rpn_cls_prob
    self._predictions["rpn_cls_pred"] = rpn_cls_pred
    self._predictions["rpn_bbox_pred"] = rpn_bbox_pred
    self._predictions["rois"] = rois

    return rois 
开发者ID:endernewton,项目名称:tf-faster-rcnn,代码行数:39,代码来源:network.py

示例5: _region_proposal

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import RPN_CHANNELS [as 别名]
def _region_proposal(self, net_conv, is_training):
        initializer = slim.xavier_initializer(uniform=True)

        rpn = slim.conv2d(net_conv, cfg.RPN_CHANNELS, [3, 3], trainable=is_training, weights_initializer=initializer,
                          scope="rpn_conv/3x3")
        self._act_summaries.append(rpn)

        hidden_num = 128
        # bi_lstm shape: [-1, hidden_num * 2]
        bi_lstm = self._BiLstm(rpn, cfg.RPN_CHANNELS, hidden_num, name="bi_lstm")

        shape = tf.shape(rpn)
        N, H, W, _ = shape[0], shape[1], shape[2], shape[3]
        bi_lstm_reshape = tf.reshape(bi_lstm, [N, H, W, hidden_num * 2])

        fc = slim.conv2d(bi_lstm_reshape, 512, [1, 1], weights_initializer=initializer,
                         padding='VALID', scope='conv_fc')

        # use 1x1 conv as FC (N, H, W, num_anchors * 2)
        rpn_cls_score = slim.conv2d(fc, self._num_anchors * 2, [1, 1], weights_initializer=initializer,
                                    padding='VALID', activation_fn=None, scope='rpn_cls_score')

        # use 1x1 conv as FC (N, H, W, num_anchors * 4)
        rpn_bbox_pred = slim.conv2d(fc, self._num_anchors * 4, [1, 1], weights_initializer=initializer,
                                    padding='VALID', activation_fn=None, scope='rpn_bbox_pred')

        # (N, H, W, num_anchors * 2) -> (N, H, W * num_anchors, 2)
        rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape')
        rpn_cls_prob = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob")

        # (N, H, W*num_anchors, 2) -> (N, H, W, num_anchors*2)
        rpn_cls_prob_reshape = self._reshape_layer(rpn_cls_prob, self._num_anchors * 2, "rpn_cls_prob_reshape")

        if is_training:
            self._anchor_target_layer(rpn_cls_score, "anchor")
        else:
            if cfg.TEST.MODE == 'nms':
                rois, _ = self._proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, "rois")
            elif cfg.TEST.MODE == 'top':
                rois, _ = self._proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
            else:
                raise NotImplementedError
            self._predictions["rois"] = rois

        self._predictions["rpn_cls_score"] = rpn_cls_score
        self._predictions["rpn_cls_score_reshape"] = rpn_cls_score_reshape
        self._predictions["rpn_cls_prob"] = rpn_cls_prob_reshape
        self._predictions["rpn_bbox_pred"] = rpn_bbox_pred 
开发者ID:Sanster,项目名称:tf_ctpn,代码行数:50,代码来源:network.py


注:本文中的model.config.cfg.RPN_CHANNELS属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。