当前位置: 首页>>代码示例>>Python>>正文


Python cfg.ANCHOR_SCALES属性代码示例

本文整理汇总了Python中model.config.cfg.ANCHOR_SCALES属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.ANCHOR_SCALES属性的具体用法?Python cfg.ANCHOR_SCALES怎么用?Python cfg.ANCHOR_SCALES使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在model.config.cfg的用法示例。


在下文中一共展示了cfg.ANCHOR_SCALES属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: construct_graph

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import ANCHOR_SCALES [as 别名]
def construct_graph(self):
    # Set the random seed
    torch.manual_seed(cfg.RNG_SEED)
    # Build the main computation graph
    self.net.create_architecture(self.imdb.num_classes, tag='default',
                                            anchor_scales=cfg.ANCHOR_SCALES,
                                            anchor_ratios=cfg.ANCHOR_RATIOS)
    # Define the loss
    # loss = layers['total_loss']
    # Set learning rate and momentum
    lr = cfg.TRAIN.LEARNING_RATE
    params = []
    for key, value in dict(self.net.named_parameters()).items():
      if value.requires_grad:
        if 'bias' in key:
          params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
        else:
          params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
    self.optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
    # Write the train and validation information to tensorboard
    self.writer = tb.writer.FileWriter(self.tbdir)
    self.valwriter = tb.writer.FileWriter(self.tbvaldir)

    return lr, self.optimizer 
开发者ID:yxgeee,项目名称:pytorch-FPN,代码行数:26,代码来源:train_val.py

示例2: construct_graph

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import ANCHOR_SCALES [as 别名]
def construct_graph(self, sess):
    with sess.graph.as_default():
      # Set the random seed for tensorflow
      tf.set_random_seed(cfg.RNG_SEED)
      # Build the main computation graph
      layers = self.net.create_architecture('TRAIN', self.imdb.num_classes, tag='default',
                                            anchor_scales=cfg.ANCHOR_SCALES,
                                            anchor_ratios=cfg.ANCHOR_RATIOS)
      # Define the loss
      loss = layers['total_loss']
      # Set learning rate and momentum
      lr = tf.Variable(cfg.TRAIN.LEARNING_RATE, trainable=False)
      self.optimizer = tf.train.MomentumOptimizer(lr, cfg.TRAIN.MOMENTUM)

      # Compute the gradients with regard to the loss
      gvs = self.optimizer.compute_gradients(loss)
      # Double the gradient of the bias if set
      if cfg.TRAIN.DOUBLE_BIAS:
        final_gvs = []
        with tf.variable_scope('Gradient_Mult') as scope:
          for grad, var in gvs:
            scale = 1.
            if cfg.TRAIN.DOUBLE_BIAS and '/biases:' in var.name:
              scale *= 2.
            if not np.allclose(scale, 1.0):
              grad = tf.multiply(grad, scale)
            final_gvs.append((grad, var))
        train_op = self.optimizer.apply_gradients(final_gvs)
      else:
        train_op = self.optimizer.apply_gradients(gvs)

      # We will handle the snapshots ourselves
      self.saver = tf.train.Saver(max_to_keep=100000)
      # Write the train and validation information to tensorboard
      self.writer = tf.summary.FileWriter(self.tbdir, sess.graph)
      self.valwriter = tf.summary.FileWriter(self.tbvaldir)

    return lr, train_op 
开发者ID:endernewton,项目名称:tf-faster-rcnn,代码行数:40,代码来源:train_val.py

示例3: convert_from_depre

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import ANCHOR_SCALES [as 别名]
def convert_from_depre(net, imdb, input_dir, output_dir, snapshot, max_iters):
  if not osp.exists(output_dir):
    os.makedirs(output_dir)

  tfconfig = tf.ConfigProto(allow_soft_placement=True)
  tfconfig.gpu_options.allow_growth = True
  sess = tf.Session(config=tfconfig)

  num_classes = imdb.num_classes
  with sess.graph.as_default():
    tf.set_random_seed(cfg.RNG_SEED)
    layers = net.create_architecture(sess, 'TRAIN', num_classes, tag='default',
                                            anchor_scales=cfg.ANCHOR_SCALES,
                                            anchor_ratios=cfg.ANCHOR_RATIOS)
    loss = layers['total_loss']
    # Learning rate should be reduced already
    lr = tf.Variable(cfg.TRAIN.LEARNING_RATE * cfg.TRAIN.GAMMA, trainable=False)
    momentum = cfg.TRAIN.MOMENTUM
    optimizer = tf.train.MomentumOptimizer(lr, momentum)
    gvs = optimizer.compute_gradients(loss)
    if cfg.TRAIN.DOUBLE_BIAS:
      final_gvs = []
      with tf.variable_scope('Gradient_Mult') as scope:
        for grad, var in gvs:
          scale = 1.
          if cfg.TRAIN.DOUBLE_BIAS and '/biases:' in var.name:
            scale *= 2.
          if not np.allclose(scale, 1.0):
            grad = tf.multiply(grad, scale)
          final_gvs.append((grad, var))
      train_op = optimizer.apply_gradients(final_gvs)
    else:
      train_op = optimizer.apply_gradients(gvs)

    checkpoint = osp.join(input_dir, snapshot + '.ckpt')
    variables = tf.global_variables()
    name2var = {convert_names(v.name): v for v in variables}
    target_names = get_variables_in_checkpoint_file(checkpoint)
    restorer = tf.train.Saver(name2var)
    saver = tf.train.Saver()

    print('Importing...')
    restorer.restore(sess, checkpoint)
    checkpoint = osp.join(output_dir, snapshot + '.ckpt')
    print('Exporting...')
    saver.save(sess, checkpoint)

    # also copy the pkl file
    index = osp.join(input_dir, snapshot + '.pkl')
    outdex = osp.join(output_dir, snapshot + '.pkl')
    shutil.copy(index, outdex)

  sess.close() 
开发者ID:wanjinchang,项目名称:SSH-TensorFlow,代码行数:55,代码来源:convert_from_depre.py

示例4: construct_graph

# 需要导入模块: from model.config import cfg [as 别名]
# 或者: from model.config.cfg import ANCHOR_SCALES [as 别名]
def construct_graph(self):
    # Set the random seed
    torch.manual_seed(cfg.RNG_SEED)
    # Build the main computation graph
    self.net.create_architecture(self.imdb.num_classes, tag='default',
                                            anchor_scales=cfg.ANCHOR_SCALES,
                                            anchor_ratios=cfg.ANCHOR_RATIOS)
    # Define the loss
    # loss = layers['total_loss']
    # Set learning rate and momentum
    lr = cfg.TRAIN.LEARNING_RATE
    params = []
    for key, value in dict(self.net.named_parameters()).items():
      if value.requires_grad:
        if 'mask' in key:
          if 'bias' in key:
            params += [{'params': [value], 'lr': 10*lr * (cfg.TRAIN.DOUBLE_BIAS + 1),
                        'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
          else:
            params += [{'params': [value], 'lr': 10*lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
        elif 'lightrcnn' in key:
          if 'bias' in key:
            params += [{'params': [value], 'lr': 10 * lr * (cfg.TRAIN.DOUBLE_BIAS + 1),
                        'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
          else:
            params += [{'params': [value], 'lr': 10 * lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
        else:
          if 'bias' in key:
            params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1),
                        'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
          else:
            params += [{'params': [value], 'lr': lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]

        # if 'features' in key or 'classifier' in key or 'net' in key:
        #   if 'bias' in key:
        #     params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
        #   else:
        #     params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
        # elif 'dec_channel' in key or 'global' in key:
        #   if 'bias' in key:
        #     params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1)*10,
        #                 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
        #   else:
        #     params += [{'params': [value], 'lr': lr*10, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
    self.optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
    # Write the train and validation information to tensorboard
    self.writer = tb.writer.FileWriter(self.tbdir)
    self.valwriter = tb.writer.FileWriter(self.tbvaldir)

    return lr, self.optimizer 
开发者ID:Sundrops,项目名称:pytorch-faster-rcnn,代码行数:52,代码来源:train_val.py


注:本文中的model.config.cfg.ANCHOR_SCALES属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。