本文整理汇总了Python中model.G_NET属性的典型用法代码示例。如果您正苦于以下问题:Python model.G_NET属性的具体用法?Python model.G_NET怎么用?Python model.G_NET使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类model
的用法示例。
在下文中一共展示了model.G_NET属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: models
# 需要导入模块: import model [as 别名]
# 或者: from model import G_NET [as 别名]
def models(word_len):
#print(word_len)
text_encoder = cache.get('text_encoder')
if text_encoder is None:
#print("text_encoder not cached")
text_encoder = RNN_ENCODER(word_len, nhidden=cfg.TEXT.EMBEDDING_DIM)
state_dict = torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage)
text_encoder.load_state_dict(state_dict)
if cfg.CUDA:
text_encoder.cuda()
text_encoder.eval()
cache.set('text_encoder', text_encoder, timeout=60 * 60 * 24)
netG = cache.get('netG')
if netG is None:
#print("netG not cached")
netG = G_NET()
state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
if cfg.CUDA:
netG.cuda()
netG.eval()
cache.set('netG', netG, timeout=60 * 60 * 24)
return text_encoder, netG
示例2: load_network
# 需要导入模块: import model [as 别名]
# 或者: from model import G_NET [as 别名]
def load_network(gpus):
netG = G_NET()
netG.apply(weights_init)
netG = torch.nn.DataParallel(netG, device_ids=gpus)
print(netG)
netsD = []
for i in range(3): # 3 discriminators for background, parent and child stage
netsD.append(D_NET(i))
for i in range(len(netsD)):
netsD[i].apply(weights_init)
netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
count = 0
if cfg.TRAIN.NET_G != '':
state_dict = torch.load(cfg.TRAIN.NET_G)
netG.load_state_dict(state_dict)
print('Load ', cfg.TRAIN.NET_G)
istart = cfg.TRAIN.NET_G.rfind('_') + 1
iend = cfg.TRAIN.NET_G.rfind('.')
count = cfg.TRAIN.NET_G[istart:iend]
count = int(count) + 1
if cfg.TRAIN.NET_D != '':
for i in range(len(netsD)):
print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
state_dict = torch.load('%s_%d.pth' % (cfg.TRAIN.NET_D, i))
netsD[i].load_state_dict(state_dict)
if cfg.CUDA:
netG.cuda()
for i in range(len(netsD)):
netsD[i].cuda()
return netG, netsD, len(netsD), count
示例3: evaluate_finegan
# 需要导入模块: import model [as 别名]
# 或者: from model import G_NET [as 别名]
def evaluate_finegan(self):
if cfg.TRAIN.NET_G == '':
print('Error: the path for model not found!')
else:
# Build and load the generator
netG = G_NET()
netG.apply(weights_init)
netG = torch.nn.DataParallel(netG, device_ids=self.gpus)
model_dict = netG.state_dict()
state_dict = \
torch.load(cfg.TRAIN.NET_G,
map_location=lambda storage, loc: storage)
state_dict = {k: v for k, v in state_dict.items() if k in model_dict}
model_dict.update(state_dict)
netG.load_state_dict(model_dict)
print('Load ', cfg.TRAIN.NET_G)
# Uncomment this to print Generator layers
# print(netG)
nz = cfg.GAN.Z_DIM
noise = torch.FloatTensor(self.batch_size, nz)
noise.data.normal_(0, 1)
if cfg.CUDA:
netG.cuda()
noise = noise.cuda()
netG.eval()
background_class = cfg.TEST_BACKGROUND_CLASS
parent_class = cfg.TEST_PARENT_CLASS
child_class = cfg.TEST_CHILD_CLASS
bg_code = torch.zeros([self.batch_size, cfg.FINE_GRAINED_CATEGORIES])
p_code = torch.zeros([self.batch_size, cfg.SUPER_CATEGORIES])
c_code = torch.zeros([self.batch_size, cfg.FINE_GRAINED_CATEGORIES])
for j in range(self.batch_size):
bg_code[j][background_class] = 1
p_code[j][parent_class] = 1
c_code[j][child_class] = 1
fake_imgs, fg_imgs, mk_imgs, fgmk_imgs = netG(noise, c_code, p_code, bg_code) # Forward pass through the generator
self.save_image(fake_imgs[0][0], self.save_dir, 'background')
self.save_image(fake_imgs[1][0], self.save_dir, 'parent_final')
self.save_image(fake_imgs[2][0], self.save_dir, 'child_final')
self.save_image(fg_imgs[0][0], self.save_dir, 'parent_foreground')
self.save_image(fg_imgs[1][0], self.save_dir, 'child_foreground')
self.save_image(mk_imgs[0][0], self.save_dir, 'parent_mask')
self.save_image(mk_imgs[1][0], self.save_dir, 'child_mask')
self.save_image(fgmk_imgs[0][0], self.save_dir, 'parent_foreground_masked')
self.save_image(fgmk_imgs[1][0], self.save_dir, 'child_foreground_masked')
示例4: load_network
# 需要导入模块: import model [as 别名]
# 或者: from model import G_NET [as 别名]
def load_network(gpus):
netG = G_NET()
netG.apply(weights_init)
netG = torch.nn.DataParallel(netG, device_ids=gpus)
print(netG)
netsD = []
if cfg.TREE.BRANCH_NUM > 0:
netsD.append(D_NET64())
if cfg.TREE.BRANCH_NUM > 1:
netsD.append(D_NET128())
if cfg.TREE.BRANCH_NUM > 2:
netsD.append(D_NET256())
if cfg.TREE.BRANCH_NUM > 3:
netsD.append(D_NET512())
if cfg.TREE.BRANCH_NUM > 4:
netsD.append(D_NET1024())
# TODO: if cfg.TREE.BRANCH_NUM > 5:
for i in range(len(netsD)):
netsD[i].apply(weights_init)
netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
# print(netsD[i])
print('# of netsD', len(netsD))
count = 0
if cfg.TRAIN.NET_G != '':
state_dict = torch.load(cfg.TRAIN.NET_G)
netG.load_state_dict(state_dict)
print('Load ', cfg.TRAIN.NET_G)
istart = cfg.TRAIN.NET_G.rfind('_') + 1
iend = cfg.TRAIN.NET_G.rfind('.')
count = cfg.TRAIN.NET_G[istart:iend]
count = int(count) + 1
if cfg.TRAIN.NET_D != '':
for i in range(len(netsD)):
print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i))
netsD[i].load_state_dict(state_dict)
inception_model = INCEPTION_V3()
if cfg.CUDA:
netG.cuda()
for i in range(len(netsD)):
netsD[i].cuda()
inception_model = inception_model.cuda()
inception_model.eval()
return netG, netsD, len(netsD), inception_model, count
示例5: evaluate
# 需要导入模块: import model [as 别名]
# 或者: from model import G_NET [as 别名]
def evaluate(self, split_dir):
if cfg.TRAIN.NET_G == '':
print('Error: the path for morels is not found!')
else:
# Build and load the generator
netG = G_NET()
netG.apply(weights_init)
netG = torch.nn.DataParallel(netG, device_ids=self.gpus)
print(netG)
# state_dict = torch.load(cfg.TRAIN.NET_G)
state_dict = \
torch.load(cfg.TRAIN.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load ', cfg.TRAIN.NET_G)
# the path to save generated images
s_tmp = cfg.TRAIN.NET_G
istart = s_tmp.rfind('_') + 1
iend = s_tmp.rfind('.')
iteration = int(s_tmp[istart:iend])
s_tmp = s_tmp[:s_tmp.rfind('/')]
save_dir = '%s/iteration%d/%s' % (s_tmp, iteration, split_dir)
if cfg.TEST.B_EXAMPLE:
folder = '%s/super' % (save_dir)
else:
folder = '%s/single' % (save_dir)
print('Make a new folder: ', folder)
mkdir_p(folder)
nz = cfg.GAN.Z_DIM
noise = Variable(torch.FloatTensor(self.batch_size, nz))
if cfg.CUDA:
netG.cuda()
noise = noise.cuda()
# switch to evaluate mode
netG.eval()
num_batches = int(cfg.TEST.SAMPLE_NUM / self.batch_size)
cnt = 0
for step in xrange(num_batches):
noise.data.normal_(0, 1)
fake_imgs, _, _ = netG(noise)
if cfg.TEST.B_EXAMPLE:
self.save_superimages(fake_imgs[-1], folder, cnt, 256)
else:
self.save_singleimages(fake_imgs[-1], folder, cnt, 256)
# self.save_singleimages(fake_imgs[-2], folder, 128)
# self.save_singleimages(fake_imgs[-3], folder, 64)
cnt += self.batch_size
# ################# Text to image task############################ #
示例6: load_network
# 需要导入模块: import model [as 别名]
# 或者: from model import G_NET [as 别名]
def load_network(gpus):
netG = G_NET()
netG.apply(weights_init)
netG = torch.nn.DataParallel(netG, device_ids=gpus)
print(netG)
netsD = []
if cfg.TREE.BRANCH_NUM > 0:
netsD.append(D_NET64())
if cfg.TREE.BRANCH_NUM > 1:
netsD.append(D_NET128())
if cfg.TREE.BRANCH_NUM > 2:
netsD.append(D_NET256())
if cfg.TREE.BRANCH_NUM > 3:
netsD.append(D_NET512())
if cfg.TREE.BRANCH_NUM > 4:
netsD.append(D_NET1024())
# TODO: if cfg.TREE.BRANCH_NUM > 5:
for i in range(len(netsD)):
netsD[i].apply(weights_init)
netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
# print(netsD[i])
print('# of netsD', len(netsD))
count = 0
if cfg.TRAIN.NET_G != '':
state_dict = torch.load(cfg.TRAIN.NET_G)
netG.load_state_dict(state_dict)
print('Load ', cfg.TRAIN.NET_G)
try:
istart = cfg.TRAIN.NET_G.rfind('_') + 1
iend = cfg.TRAIN.NET_G.rfind('.')
count = cfg.TRAIN.NET_G[istart:iend]
count = int(count)
except:
last_run_dir = cfg.DATA_DIR + '/' + cfg.LAST_RUN_DIR + '/Model'
with open(last_run_dir + '/count.txt', 'r') as f:
count = int(f.read())
count = int(count) + 1
if cfg.TRAIN.NET_D != '':
for i in range(len(netsD)):
print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i))
netsD[i].load_state_dict(state_dict)
inception_model = INCEPTION_V3()
if cfg.CUDA:
netG.cuda()
for i in range(len(netsD)):
netsD[i].cuda()
inception_model = inception_model.cuda()
inception_model.eval()
return netG, netsD, len(netsD), inception_model, count