本文整理汇总了Python中matplotlib.lines.TICKDOWN属性的典型用法代码示例。如果您正苦于以下问题:Python lines.TICKDOWN属性的具体用法?Python lines.TICKDOWN怎么用?Python lines.TICKDOWN使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类matplotlib.lines
的用法示例。
在下文中一共展示了lines.TICKDOWN属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: apply_tickdir
# 需要导入模块: from matplotlib import lines [as 别名]
# 或者: from matplotlib.lines import TICKDOWN [as 别名]
def apply_tickdir(self, tickdir):
if tickdir is None:
tickdir = rcParams['%s.direction' % self._name]
self._tickdir = tickdir
if self._tickdir == 'in':
self._tickmarkers = (mlines.TICKUP, mlines.TICKDOWN)
self._pad = self._base_pad
elif self._tickdir == 'inout':
self._tickmarkers = ('|', '|')
self._pad = self._base_pad + self._size / 2.
else:
self._tickmarkers = (mlines.TICKDOWN, mlines.TICKUP)
self._pad = self._base_pad + self._size
示例2: apply_tickdir
# 需要导入模块: from matplotlib import lines [as 别名]
# 或者: from matplotlib.lines import TICKDOWN [as 别名]
def apply_tickdir(self, tickdir):
if tickdir is None:
tickdir = rcParams['%s.direction' % self._name]
self._tickdir = tickdir
if self._tickdir == 'in':
self._tickmarkers = (mlines.TICKUP, mlines.TICKDOWN)
elif self._tickdir == 'inout':
self._tickmarkers = ('|', '|')
else:
self._tickmarkers = (mlines.TICKDOWN, mlines.TICKUP)
self._pad = self._base_pad + self.get_tick_padding()
self.stale = True
示例3: TickSpineFormatter
# 需要导入模块: from matplotlib import lines [as 别名]
# 或者: from matplotlib.lines import TICKDOWN [as 别名]
def TickSpineFormatter(ax, sizeformat = "esurf"):
"""This formats the line weights on the bounding box and ticks.
Args:
ax1 (axis object): the matplotlib axis object
size_format (str): The size format. Can be geomorhpology, esurf or big
returns:
The axis object
Author: SMM
"""
import matplotlib.lines as mpllines
# some formatting to make some of the ticks point outward
for line in ax.get_xticklines():
line.set_marker(mpllines.TICKDOWN)
for line in ax.get_yticklines():
line.set_marker(mpllines.TICKLEFT)
if sizeformat == "esurf":
lw = 1.0
pd = 8
elif sizeformat == "geomorphology":
lw = 1.5
pd = 10
elif sizeformat == "big":
lw = 2
pd = 12
else:
lw = 1.0
pd = 8
ax.spines['top'].set_linewidth(lw)
ax.spines['left'].set_linewidth(lw)
ax.spines['right'].set_linewidth(lw)
ax.spines['bottom'].set_linewidth(lw)
# This gets all the ticks, and pads them away from the axis so that the corners don't overlap
ax.tick_params(axis='both', width=lw, pad = pd)
for tick in ax.xaxis.get_major_ticks():
tick.set_pad(pd)
return ax
#==============================================================================
# This formats ticks if you want to convert metres to km
#==============================================================================
示例4: tukeyplot
# 需要导入模块: from matplotlib import lines [as 别名]
# 或者: from matplotlib.lines import TICKDOWN [as 别名]
def tukeyplot(results, dim=None, yticklabels=None):
npairs = len(results)
fig = plt.figure()
fsp = fig.add_subplot(111)
fsp.axis([-50,50,0.5,10.5])
fsp.set_title('95 % family-wise confidence level')
fsp.title.set_y(1.025)
fsp.set_yticks(np.arange(1,11))
fsp.set_yticklabels(['V-T','V-S','T-S','V-P','T-P','S-P','V-M',
'T-M','S-M','P-M'])
#fsp.yaxis.set_major_locator(mticker.MaxNLocator(npairs))
fsp.yaxis.grid(True, linestyle='-', color='gray')
fsp.set_xlabel('Differences in mean levels of Var', labelpad=8)
fsp.xaxis.tick_bottom()
fsp.yaxis.tick_left()
xticklines = fsp.get_xticklines()
for xtickline in xticklines:
xtickline.set_marker(lines.TICKDOWN)
xtickline.set_markersize(10)
xlabels = fsp.get_xticklabels()
for xlabel in xlabels:
xlabel.set_y(-.04)
yticklines = fsp.get_yticklines()
for ytickline in yticklines:
ytickline.set_marker(lines.TICKLEFT)
ytickline.set_markersize(10)
ylabels = fsp.get_yticklabels()
for ylabel in ylabels:
ylabel.set_x(-.04)
for pair in range(npairs):
data = .5+results[pair]/100.
#fsp.axhline(y=npairs-pair, xmin=data[0], xmax=data[1], linewidth=1.25,
fsp.axhline(y=npairs-pair, xmin=data.mean(), xmax=data[1], linewidth=1.25,
color='blue', marker="|", markevery=1)
fsp.axhline(y=npairs-pair, xmin=data[0], xmax=data.mean(), linewidth=1.25,
color='blue', marker="|", markevery=1)
#for pair in range(npairs):
# data = .5+results[pair]/100.
# data = results[pair]
# data = np.r_[data[0],data.mean(),data[1]]
# l = plt.plot(data, [npairs-pair]*len(data), color='black',
# linewidth=.5, marker="|", markevery=1)
fsp.axvline(x=0, linestyle="--", color='black')
fig.subplots_adjust(bottom=.125)