本文整理汇总了Python中lstm.LSTM属性的典型用法代码示例。如果您正苦于以下问题:Python lstm.LSTM属性的具体用法?Python lstm.LSTM怎么用?Python lstm.LSTM使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类lstm
的用法示例。
在下文中一共展示了lstm.LSTM属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward_instance
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def forward_instance(self, instance_node, current_depth, max_depth, sequence_function = SEQUENCE_FUNCTIONS):
if instance_node.get_number_of_children() == 0:
return -100 * np.ones(self.hidden_layer_sizes[current_depth]) # no children signifier vector
input_sequence = np.array([])
children_sequence = get_sequence(instance_node.get_children(), sequence_function[current_depth])
for item in children_sequence:
feature_vector = item.get_feature_vector()
""" If we are not at the very bottom we need to get input from LSTM at the next level"""
LSTM_output_from_below = np.array([])
if current_depth < max_depth:
LSTM_output_from_below = self.forward_instance(item, current_depth + 1, max_depth).reshape(self.hidden_layer_sizes[current_depth +1]) # recursive call
full_feature_vector = np.concatenate((LSTM_output_from_below, feature_vector)) # concatenate feature vector and input from LSTM output below
# concatenate current feature vector to input sequence for the LSTM
input_sequence = np.concatenate((input_sequence,full_feature_vector))
# forward the input sequence to this depth's LSTM
input_sequence = input_sequence.reshape(instance_node.get_number_of_children(), 1, len(full_feature_vector))
_, _, Y, cache = self.lstm_stack[current_depth]._forward(input_sequence)
instance_node.cache = cache
instance_node.children_sequence = children_sequence
return softmax(Y)
示例2: _compute_LSTM_updates
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def _compute_LSTM_updates(self, instance_node, current_depth):
"""Computes the update to the LSTM coefficients, recurrently down
the tree of nodes."""
# First, computes the update for the current node.
method = self.learning_method_vector[current_depth]
if method == "steady_rate":
self._compute_update_LSTM_weights_steady_rate(instance_node, current_depth)
elif method == "momentum":
self._compute_update_LSTM_weights_with_momentum(instance_node, current_depth)
elif method == "adadelta":
self._compute_update_LSTM_weights_adadelta(instance_node, current_depth)
else:
raise UnknownLearningMethod(method)
# Then, recurs down the tree.
if current_depth == self.max_depth - 1:
return
for item in instance_node.children_sequence:
self._compute_LSTM_updates(item, current_depth + 1)
示例3: train
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def train(model_name, train_data, dev_data):
training_data = np.load(train_data)
validation_data = np.load(dev_data)
assert training_data["vocabulary"] == validation_data["vocabulary"]
assert training_data["batch_size"] == validation_data["batch_size"]
assert training_data["punctuations"] == validation_data["punctuations"]
net = lstm.LSTM()
net.initialize(projection_size=conf.PROJECTION_SIZE,
hidden_size=conf.HIDDEN_SIZE,
in_vocabulary=training_data["vocabulary"],
out_vocabulary=training_data["punctuations"],
batch_size=training_data["batch_size"],
hidden_activation=conf.HIDDEN_ACTIVATION,
gate_activation = conf.GATE_ACTIVATION,
bptt_steps=conf.BPTT_STEPS)
_train(net, training_data, validation_data, model_name, conf.LEARN_RATE,
conf.MAX_EPOCHS, conf.MIN_IMPROVEMENT)
示例4: forward_propagation
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def forward_propagation(self, instance_node, instance_depth=0):
"""Performs forward propagation through the multi-level LSTM structure.
The node instance_node at depth instance_depth is propagated.
The node should be an object of class InstanceNode."""
# Prepares for back-propagation.
self._reset_learning_parameters()
input_sequence = np.array([])
children_sequence = list(instance_node.get_children())
if len(children_sequence) == 0:
# FIXME We should really have a feature that describes the number of children.
# This loses any data that might be associated with the node itself.
return -100 * np.ones(self.output_sizes[instance_depth]) # no children signifier vector
if instance_depth in self.shuffle_levels:
# Shuffles children order if required.
random.shuffle(children_sequence)
for child_node in children_sequence:
child_node_feature_vector = child_node.get_feature_vector()
assert len(child_node_feature_vector) == self.node_feature_sizes[instance_depth]
# If we are not at the very bottom we need to get input from LSTM at the next level.
LSTM_output_from_below = np.array([])
if instance_depth < self.max_depth - 1:
LSTM_output_from_below = self.forward_propagation(child_node, instance_depth=instance_depth + 1).reshape(
self.output_sizes[instance_depth + 1]) # recursive call
# concatenate feature vector and input from LSTM output below
full_feature_vector = np.concatenate((LSTM_output_from_below, child_node_feature_vector))
# concatenate current feature vector to input sequence for the LSTM
# TODO: This is very confusing; can you change this to use row and column stacking?
input_sequence = np.concatenate((input_sequence, full_feature_vector))
# forward the input sequence to this depth's LSTM
input_sequence = input_sequence.reshape(len(children_sequence), 1, len(full_feature_vector))
_, _, Y, cache = self.lstm_stack[instance_depth]._forward(input_sequence)
# We store the state of the LSTM, so we can use it for back-propagation.
instance_node.cache.lstm_cache = cache
# we also need to save the sequence in the same order we used it.
instance_node.children_sequence = children_sequence
return Y
示例5: backward_propagation
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def backward_propagation(self, instance_node, derivative, instance_depth=0):
"""Performs backward propagation, given a loss derivative for the outputs."""
# First, we backpropagate through the layers the backward gradient.
self._compute_backward_gradients(instance_node, derivative, instance_depth)
# Second, we compute (but we do not apply) the update at all layers
# of the MLSL. We don't apply it because at every layer, there are in
# general multiple instances of an LSTM, and we will have to add all the
# updates for an LSTM at the same level before applying them.
self._compute_LSTM_updates(instance_node, instance_depth)
# Finally, once the updates have been computed, it applies them
# to all the levels of the LSTM.
self._apply_LSTM_updates()
示例6: _compute_update_LSTM_weights_steady_rate
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def _compute_update_LSTM_weights_steady_rate(self, instance_node, current_depth):
"""Computes the LSTM weight update at steady rate."""
if instance_node.cache is not None:
dW = - self.learning_rate_vector[current_depth] * instance_node.cache.weight_gradient
self.sum_of_dWs[current_depth] += dW
self.number_of_nodes_per_level[current_depth] += 1
示例7: _compute_update_LSTM_weights_with_momentum
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def _compute_update_LSTM_weights_with_momentum(self, instance_node, current_depth):
"""Computes the LSTM weight update using momentum."""
if instance_node.cache is not None:
if self.lstm_stack[current_depth].momentum_dW is None: # initialize momentum of LSTM to zero
self.lstm_stack[current_depth].momentum_dW = np.zeros(self.lstm_stack[current_depth].WLSTM.shape)
dW = (- self.learning_rate_vector[current_depth] * instance_node.cache.weight_gradient
+ self.momentum_vector[current_depth] * self.lstm_stack[current_depth].momentum_dW)
self.lstm_stack[current_depth].WLSTM += dW
self.sum_of_dWs[current_depth] += dW
self.number_of_nodes_per_level[current_depth] += 1
示例8: _apply_LSTM_updates
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def _apply_LSTM_updates(self):
"""Applies the updates that have been computed to the LSTM."""
for d in range(self.max_depth):
self.lstm_stack[d].WLSTM += self.sum_of_dWs[d] / self.number_of_nodes_per_level[d]
self.lstm_stack[d].momentum_dW = self.sum_of_dWs[d] / self.number_of_nodes_per_level[d]
self.lstm_stack[d].tot_gradient_weight = self.sum_tot_delta_weight[d] / self.number_of_nodes_per_level[d]
self.lstm_stack[d].tot_sq_gradient = self.sum_tot_sq_gradient[d] / self.number_of_nodes_per_level[d]
self.lstm_stack[d].tot_delta_weight = self.sum_tot_delta_weight[d] / self.number_of_nodes_per_level[d]
self.lstm_stack[d].tot_sq_delta = self.sum_tot_sq_delta[d] / self.number_of_nodes_per_level[d]
# the following class represents nodes of the unfoldings
# the MLSL module understands and can train and test on tree instances that are encoded as objects of this class
示例9: __init__
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def __init__(self, feature_vector = None, label = None, id = None):
self.id = id
self.feature_vector = feature_vector
self.label = label
self.children = []
self.children_sequence = [] # Stores the specific order by which the items were fed into the LSTM to update weights correctly
# The gradient backpropagated at this node will be left here.
# It can be used for further back-propagation as needed.
self.gradient = None
# Here we store intermediate values useful for the processing.
self.cache = Storage()
示例10: __init__
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def __init__(self,max_depth, hidden_layer_sizes, input_sizes):
self.lstm_stack = [lstm.LSTM() for l in range(max_depth)]
for l in range(max_depth):
self.lstm_stack[l].initialize(input_sizes[l] + (0 if l== max_depth -1 else hidden_layer_sizes[l + 1]), hidden_layer_sizes[l])
self.hidden_layer_sizes = hidden_layer_sizes
self.input_sizes = input_sizes
示例11: sgd_train_multilayer
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def sgd_train_multilayer(self, root, target, max_depth, objective_function, learning_rate_vector):
# first pass the instance root one forward so that all internal LSTM states
# get calculated and stored in "cache" field
Y = self.forward_instance(root, current_depth = 0, max_depth= max_depth)
deriv = getDerivative(output = Y, target = target, objective = objective_function)
self.calculate_backward_gradients(root, deriv, 0, max_depth)
self.update_LSTM_weights(root, 0, max_depth, learning_rate_vector = learning_rate_vector)
示例12: setUp
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def setUp(self):
global l, in_vocabulary, out_vocabulary
l = LSTM()
in_vocabulary = {'hello': 0, 'world': 1, 'dog': 2, 'cat': 3}
out_vocabulary = {' ': 0, ',': 1, '.': 2}
示例13: load_model
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def load_model(file_path):
import lstm
import numpy as np
model = np.load(file_path)
net = lstm.LSTM()
net.load(model)
return net
示例14: build
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def build(self):
print '\t building rnn cell...'
if self.cell=='gru':
hidden_layer=GRU(self.rng,
self.n_input,self.n_hidden,self.n_batch,
self.x,self.E,self.x_mask,
self.is_train,self.p)
else:
hidden_layer=LSTM(self.rng,
self.n_input,self.n_hidden,self.n_batch,
self.x,self.E,self.x_mask,
self.is_train,self.p)
print '\t building softmax output layer...'
softmax_shape=(self.n_hidden,self.n_output)
output_layer=H_Softmax(softmax_shape,hidden_layer.activation,self.y,self.y_mask)
self.params=[self.E,]
self.params+=hidden_layer.params
self.params+=output_layer.params
cost=output_layer.activation
lr=T.scalar("lr")
gparams=[T.clip(T.grad(cost,p),-10,10) for p in self.params]
updates=sgd(self.params,gparams,lr)
self.train=theano.function(inputs=[self.x,self.x_mask,self.y,self.y_mask,self.n_batch,lr],
outputs=cost,
updates=updates,
givens={self.is_train:np.cast['int32'](1)})
'''
self.predict=theano.function(inputs=[self.x,self.x_mask,self.n_batch],
outputs=output_layer.prediction,
givens={self.is_train:np.cast['int32'](0)})
'''
示例15: build
# 需要导入模块: import lstm [as 别名]
# 或者: from lstm import LSTM [as 别名]
def build(self):
print 'building rnn cell...'
hidden_layer = LSTM(self.rng,
self.n_input, self.n_hidden, self.n_batch,
self.x, self.E, self.x_mask,
self.is_train, self.p)
print 'building softmax output layer...'
if self.use_adaptive_softmax:
cutoff = [2000, self.n_output]
softmax_inputs = hidden_layer.activation
logit_shape = softmax_inputs.shape
softmax_inputs = softmax_inputs.reshape([logit_shape[0]*logit_shape[1], logit_shape[2]])
labels = self.y.flatten()
y_mask = self.y_mask.flatten()
output_layer = adaptive_softmax(softmax_inputs, labels, y_mask,
self.n_hidden,
cutoff)
#cost = T.sum
training_loss = output_layer.training_losses
cost = output_layer.loss
else:
output_layer = softmax(self.n_hidden, self.n_output, hidden_layer.activation)
cost = self.categorical_crossentropy(output_layer.activation, self.y)
self.params = [self.E, ]
self.params += hidden_layer.params
self.params += output_layer.params
lr = T.scalar("lr")
gparams = [T.clip(T.grad(cost, p), -1, 1) for p in self.params]
updates = self.optimizer(self.params, gparams, lr)
self.train = theano.function(inputs=[self.x, self.x_mask, self.y, self.y_mask, lr],
outputs=[cost,hidden_layer.activation, output_layer.head_loss, output_layer.tail_loss],
updates=updates,
givens={self.is_train: np.cast['int32'](1)})
self.test = theano.function(inputs=[self.x, self.x_mask,self.y, self.y_mask],
outputs=cost,
givens={self.is_train: np.cast['int32'](0)})