当前位置: 首页>>代码示例>>Python>>正文


Python regularizers.L1L2属性代码示例

本文整理汇总了Python中keras.regularizers.L1L2属性的典型用法代码示例。如果您正苦于以下问题:Python regularizers.L1L2属性的具体用法?Python regularizers.L1L2怎么用?Python regularizers.L1L2使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在keras.regularizers的用法示例。


在下文中一共展示了regularizers.L1L2属性的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def build(self, input_shape):
        self._filter = self.add_weight(name=f'filter_{self.filter}',
                                       shape=(self.filter, self.label, 1, 1),
                                       regularizer=L1L2(0.00032),
                                       initializer='uniform',
                                       trainable=True)
        self.class_w = self.add_weight(name='class_w',
                                       shape=(self.label, self.embed_size),
                                       regularizer=L1L2(0.0000032),
                                       initializer='uniform',
                                       trainable=True)
        self.b = self.add_weight(name='bias',
                                 shape=(1,),
                                 regularizer=L1L2(0.00032),
                                 initializer='uniform',
                                 trainable=True)
        super().build(input_shape) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:19,代码来源:attention_dot.py

示例2: Token_Embedding

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def Token_Embedding(x, input_dim, output_dim, embed_weights=None,
                    mask_zero=False, input_length=None, dropout_rate=0,
                    embed_l2=1E-6, name='', time_distributed=False, **kwargs):
    """
    Basic token embedding layer, also included some dropout layer.
    """
    embed_reg = L1L2(l2=embed_l2) if embed_l2 != 0 else None
    embed_layer = Embedding(input_dim=input_dim,
                            output_dim=output_dim,
                            weights=embed_weights,
                            mask_zero=mask_zero,
                            input_length=input_length,
                            embeddings_regularizer=embed_reg,
                            name=name)
    if time_distributed:
        embed = TimeDistributed(embed_layer)(x)
    else:
        embed = embed_layer(x)
    # entire embedding channels are dropped out instead of the
    # normal Keras embedding dropout, which drops all channels for entire words
    # many of the datasets contain so few words that losing one or more words can alter the emotions completely
    if dropout_rate != 0:
        embed = SpatialDropout1D(dropout_rate)(embed)
    return embed 
开发者ID:stevewyl,项目名称:nlp_toolkit,代码行数:26,代码来源:embedding.py

示例3: __call__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(self.l1_decay, self.l2_decay)
        x = kl.Conv1D(128, 11,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        x = kl.Flatten()(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Dense(self.nb_hidden,
                     kernel_initializer=self.init,
                     kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:22,代码来源:dna.py

示例4: __call__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def __call__(self, inputs):
        x = self._merge_inputs(inputs)

        shape = getattr(x, '_keras_shape')
        replicate_model = self._replicate_model(kl.Input(shape=shape[2:]))
        x = kl.TimeDistributed(replicate_model)(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Bidirectional(kl.GRU(128, kernel_regularizer=kernel_regularizer,
                                    return_sequences=True),
                             merge_mode='concat')(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        gru = kl.GRU(256, kernel_regularizer=kernel_regularizer)
        x = kl.Bidirectional(gru)(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:20,代码来源:cpg.py

示例5: build

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def build(self, input_shape):
        # W、K and V
        self.kernel = self.add_weight(name='WKV',
                                        shape=(3, input_shape[2], self.output_dim),
                                        initializer='uniform',
                                        regularizer=L1L2(0.0000032),
                                        trainable=True)
        super().build(input_shape) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:10,代码来源:attention_self.py

示例6: test_dense

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def test_dense():
    layer_test(layers.Dense,
               kwargs={'units': 3},
               input_shape=(3, 2))

    layer_test(layers.Dense,
               kwargs={'units': 3},
               input_shape=(3, 4, 2))

    layer_test(layers.Dense,
               kwargs={'units': 3},
               input_shape=(None, None, 2))

    layer_test(layers.Dense,
               kwargs={'units': 3},
               input_shape=(3, 4, 5, 2))

    layer_test(layers.Dense,
               kwargs={'units': 3,
                       'kernel_regularizer': regularizers.l2(0.01),
                       'bias_regularizer': regularizers.l1(0.01),
                       'activity_regularizer': regularizers.L1L2(l1=0.01, l2=0.01),
                       'kernel_constraint': constraints.MaxNorm(1),
                       'bias_constraint': constraints.max_norm(1)},
               input_shape=(3, 2))

    layer = layers.Dense(3,
                         kernel_regularizer=regularizers.l1(0.01),
                         bias_regularizer='l1')
    layer.build((None, 4))
    assert len(layer.losses) == 2 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:33,代码来源:core_test.py

示例7: build_mlp

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def build_mlp(last_layer, p_dropout=0.0, num_layers=1, with_bn=True, dim=None, l2_weight=0.0,
                  last_activity_regulariser=None, propensity_dropout=None, normalize=False):
        if dim is None:
            dim = K.int_shape(last_layer)[-1]

        for i in range(num_layers):
            last_layer = Dense(dim,
                               kernel_regularizer=L1L2(l2=l2_weight),
                               bias_regularizer=L1L2(l2=l2_weight),
                               use_bias=not with_bn,
                               activity_regularizer=last_activity_regulariser if i == num_layers-1 else None)\
                (last_layer)

            if with_bn:
                last_layer = BatchNormalization(gamma_regularizer=L1L2(l2=l2_weight),
                                                beta_regularizer=L1L2(l2=l2_weight))(last_layer)
            last_layer = ELU()(last_layer)
            last_layer = Dropout(p_dropout)(last_layer)
            if propensity_dropout is not None:
                last_layer = PerSampleDropout(propensity_dropout)(last_layer)

        if normalize:
            last_layer = Lambda(lambda x: x / safe_sqrt(tf.reduce_sum(tf.square(x),
                                                                      axis=1,
                                                                      keep_dims=True)))(last_layer)

        if last_activity_regulariser is not None:
            identity_layer = Lambda(lambda x: x)
            identity_layer.activity_regularizer = last_activity_regulariser
            last_layer = identity_layer(last_layer)

        return last_layer 
开发者ID:d909b,项目名称:perfect_match,代码行数:34,代码来源:model_builder.py

示例8: _res_unit

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def _res_unit(self, inputs, nb_filter, size=3, stride=1, stage=1, block=1):

        name = '%02d-%02d/' % (stage, block)
        id_name = '%sid_' % (name)
        res_name = '%sres_' % (name)

        # Residual branch
        x = kl.BatchNormalization(name=res_name + 'bn1')(inputs)
        x = kl.Activation('relu', name=res_name + 'act1')(x)
        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(nb_filter, size,
                      name=res_name + 'conv1',
                      border_mode='same',
                      subsample_length=stride,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)

        x = kl.BatchNormalization(name=res_name + 'bn2')(x)
        x = kl.Activation('relu', name=res_name + 'act2')(x)
        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(nb_filter, size,
                      name=res_name + 'conv2',
                      border_mode='same',
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)

        # Identity branch
        if nb_filter != inputs._keras_shape[-1] or stride > 1:
            kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
            identity = kl.Conv1D(nb_filter, size,
                                 name=id_name + 'conv1',
                                 border_mode='same',
                                 subsample_length=stride,
                                 kernel_initializer=self.init,
                                 kernel_regularizer=kernel_regularizer)(inputs)
        else:
            identity = inputs

        x = kl.merge([identity, x], name=name + 'merge', mode='sum')

        return x 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:43,代码来源:dna.py

示例9: _replicate_model

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def _replicate_model(self, input):
        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Dense(256, kernel_initializer=self.init,
                     kernel_regularizer=kernel_regularizer)(input)
        x = kl.Activation(self.act_replicate)(x)

        return km.Model(input, x) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:9,代码来源:cpg.py

示例10: __call__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import L1L2 [as 别名]
def __call__(self, models):
        layers = []
        for layer in range(self.nb_layer):
            kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
            layers.append(kl.Dense(self.nb_hidden,
                                   kernel_initializer=self.init,
                                   kernel_regularizer=kernel_regularizer))
            layers.append(kl.Activation('relu'))
            layers.append(kl.Dropout(self.dropout))

        return self._build(models, layers) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:13,代码来源:joint.py


注:本文中的keras.regularizers.L1L2属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。