本文整理汇总了Python中keras.layers.advanced_activations.ELU属性的典型用法代码示例。如果您正苦于以下问题:Python advanced_activations.ELU属性的具体用法?Python advanced_activations.ELU怎么用?Python advanced_activations.ELU使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类keras.layers.advanced_activations
的用法示例。
在下文中一共展示了advanced_activations.ELU属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: deep_mlp
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def deep_mlp(self):
"""
Deep Multilayer Perceptrop.
"""
if self._config.num_mlp_layers == 0:
self.add(Dropout(0.5))
else:
for j in xrange(self._config.num_mlp_layers):
self.add(Dense(self._config.mlp_hidden_dim))
if self._config.mlp_activation == 'elu':
self.add(ELU())
elif self._config.mlp_activation == 'leaky_relu':
self.add(LeakyReLU())
elif self._config.mlp_activation == 'prelu':
self.add(PReLU())
else:
self.add(Activation(self._config.mlp_activation))
self.add(Dropout(0.5))
示例2: test_tiny_conv_elu_random
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def test_tiny_conv_elu_random(self):
np.random.seed(1988)
# Define a model
from keras.layers.advanced_activations import ELU
model = Sequential()
model.add(
Convolution2D(input_shape=(10, 10, 3), nb_filter=3, nb_row=5, nb_col=5)
)
model.add(ELU(alpha=0.8))
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_keras_model(model)
示例3: test_tiny_mcrnn_music_tagger
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def test_tiny_mcrnn_music_tagger(self):
x_in = Input(shape=(4, 6, 1))
x = ZeroPadding2D(padding=(0, 1))(x_in)
x = BatchNormalization(axis=2, name="bn_0_freq")(x)
# Conv block 1
x = Convolution2D(2, 3, 3, border_mode="same", name="conv1")(x)
x = BatchNormalization(axis=3, mode=0, name="bn1")(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name="pool1")(x)
# Conv block 2
x = Convolution2D(4, 3, 3, border_mode="same", name="conv2")(x)
x = BatchNormalization(axis=3, mode=0, name="bn2")(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name="pool2")(x)
# Should get you (1,1,2,4)
x = Reshape((2, 4))(x)
x = GRU(32, return_sequences=True, name="gru1")(x)
x = GRU(32, return_sequences=False, name="gru2")(x)
# Create model.
model = Model(x_in, x)
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
self._test_keras_model(model, mode="random_zero_mean", delta=1e-2)
示例4: build_model
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def build_model(n_classes):
if K.image_dim_ordering() == 'th':
input_shape = (1, N_MEL_BANDS, SEGMENT_DUR)
channel_axis = 1
else:
input_shape = (N_MEL_BANDS, SEGMENT_DUR, 1)
channel_axis = 3
melgram_input = Input(shape=input_shape)
m_sizes = [50, 70]
n_sizes = [1, 3, 5]
n_filters = [128, 64, 32]
maxpool_const = 4
layers = list()
for m_i in m_sizes:
for i, n_i in enumerate(n_sizes):
x = Convolution2D(n_filters[i], m_i, n_i,
border_mode='same',
init='he_normal',
W_regularizer=l2(1e-5),
name=str(n_i)+'_'+str(m_i)+'_'+'conv')(melgram_input)
x = BatchNormalization(axis=channel_axis, mode=0, name=str(n_i)+'_'+str(m_i)+'_'+'bn')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(N_MEL_BANDS, SEGMENT_DUR/maxpool_const), name=str(n_i)+'_'+str(m_i)+'_'+'pool')(x)
x = Flatten(name=str(n_i)+'_'+str(m_i)+'_'+'flatten')(x)
layers.append(x)
x = merge(layers, mode='concat', concat_axis=channel_axis)
x = Dropout(0.5)(x)
x = Dense(n_classes, init='he_normal', W_regularizer=l2(1e-5), activation='softmax', name='prediction')(x)
model = Model(melgram_input, x)
return model
示例5: test_tiny_conv_elu_random
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def test_tiny_conv_elu_random(self):
np.random.seed(1988)
# Define a model
from keras.layers.advanced_activations import ELU
model = Sequential()
model.add(Conv2D(input_shape=(10, 10, 3), filters=3, kernel_size=(5, 5)))
model.add(ELU(alpha=0.8))
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_model(model)
示例6: build_model
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def build_model(X,Y,nb_classes):
nb_filters = 32 # number of convolutional filters to use
pool_size = (2, 2) # size of pooling area for max pooling
kernel_size = (3, 3) # convolution kernel size
nb_layers = 4
input_shape = (1, X.shape[2], X.shape[3])
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid', input_shape=input_shape))
model.add(BatchNormalization(axis=1, mode=2))
model.add(Activation('relu'))
for layer in range(nb_layers-1):
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(BatchNormalization(axis=1, mode=2))
model.add(ELU(alpha=1.0))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation("softmax"))
return model
示例7: get_activation_layer
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def get_activation_layer(activation):
if activation == 'LeakyReLU':
return LeakyReLU()
if activation == 'PReLU':
return PReLU()
if activation == 'ELU':
return ELU()
if activation == 'ThresholdedReLU':
return ThresholdedReLU()
return Activation(activation)
# TODO: same for optimizers, including clipnorm
示例8: build_mlp
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def build_mlp(last_layer, p_dropout=0.0, num_layers=1, with_bn=True, dim=None, l2_weight=0.0,
last_activity_regulariser=None, propensity_dropout=None, normalize=False):
if dim is None:
dim = K.int_shape(last_layer)[-1]
for i in range(num_layers):
last_layer = Dense(dim,
kernel_regularizer=L1L2(l2=l2_weight),
bias_regularizer=L1L2(l2=l2_weight),
use_bias=not with_bn,
activity_regularizer=last_activity_regulariser if i == num_layers-1 else None)\
(last_layer)
if with_bn:
last_layer = BatchNormalization(gamma_regularizer=L1L2(l2=l2_weight),
beta_regularizer=L1L2(l2=l2_weight))(last_layer)
last_layer = ELU()(last_layer)
last_layer = Dropout(p_dropout)(last_layer)
if propensity_dropout is not None:
last_layer = PerSampleDropout(propensity_dropout)(last_layer)
if normalize:
last_layer = Lambda(lambda x: x / safe_sqrt(tf.reduce_sum(tf.square(x),
axis=1,
keep_dims=True)))(last_layer)
if last_activity_regulariser is not None:
identity_layer = Lambda(lambda x: x)
identity_layer.activity_regularizer = last_activity_regulariser
last_layer = identity_layer(last_layer)
return last_layer
示例9: Panotti_CNN
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def Panotti_CNN(X_shape, nb_classes, nb_layers=4):
# Inputs:
# X_shape = [ # spectrograms per batch, # audio channels, # spectrogram freq bins, # spectrogram time bins ]
# nb_classes = number of output n_classes
# nb_layers = number of conv-pooling sets in the CNN
from keras import backend as K
K.set_image_data_format('channels_last') # SHH changed on 3/1/2018 b/c tensorflow prefers channels_last
nb_filters = 32 # number of convolutional filters = "feature maps"
kernel_size = (3, 3) # convolution kernel size
pool_size = (2, 2) # size of pooling area for max pooling
cl_dropout = 0.5 # conv. layer dropout
dl_dropout = 0.6 # dense layer dropout
print(" MyCNN_Keras2: X_shape = ",X_shape,", channels = ",X_shape[3])
input_shape = (X_shape[1], X_shape[2], X_shape[3])
model = Sequential()
model.add(Conv2D(nb_filters, kernel_size, padding='same', input_shape=input_shape, name="Input"))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Activation('relu')) # Leave this relu & BN here. ELU is not good here (my experience)
model.add(BatchNormalization(axis=-1)) # axis=1 for 'channels_first'; but tensorflow preferse channels_last (axis=-1)
for layer in range(nb_layers-1): # add more layers than just the first
model.add(Conv2D(nb_filters, kernel_size, padding='same'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Activation('elu'))
model.add(Dropout(cl_dropout))
#model.add(BatchNormalization(axis=-1)) # ELU authors reccommend no BatchNorm. I confirm.
model.add(Flatten())
model.add(Dense(128)) # 128 is 'arbitrary' for now
#model.add(Activation('relu')) # relu (no BN) works ok here, however ELU works a bit better...
model.add(Activation('elu'))
model.add(Dropout(dl_dropout))
model.add(Dense(nb_classes))
model.add(Activation("softmax",name="Output"))
return model
# Used for when you want to use weights from a previously-trained model,
# with a different set/number of output classes
示例10: _build_model
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max,
activations, noise, droprate, coral_layer_idx, optimizer):
self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))
self.lr = tf.placeholder(tf.float32, [], name='lr')
nlayers = len(architecture)
layers_a = [self.inp_a]
layers_b = [self.inp_b]
for i, nunits in enumerate(architecture):
print nunits,
if i in coral_layer_idx: print '(CORAL)'
else: print
if isinstance(nunits, int):
shared_layer = Dense(nunits, activation='linear')
elif nunits == 'noise':
shared_layer = GaussianNoise(noise)
elif nunits == 'bn':
shared_layer = BatchNormalization()
elif nunits == 'drop':
shared_layer = Dropout(droprate)
elif nunits == 'act':
if activations == 'prelu':
shared_layer = PReLU()
elif activations == 'elu':
shared_layer = ELU()
elif activations == 'leakyrelu':
shared_layer = LeakyReLU()
else:
shared_layer = Activation(activations)
layers_a += [shared_layer(layers_a[-1])]
layers_b += [shared_layer(layers_b[-1])]
示例11: _build_model
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def _build_model(self, arch, activations, nfeatures, droprate, noise, optimizer):
self.layers = [Input(shape=(nfeatures,))]
for i, nunits in enumerate(arch):
if isinstance(nunits, int):
self.layers += [Dense(nunits, activation='linear')(self.layers[-1])]
elif nunits == 'noise':
self.layers += [GaussianNoise(noise)(self.layers[-1])]
elif nunits == 'bn':
self.layers += [BatchNormalization()(self.layers[-1])]
elif nunits == 'abn':
self.layers += [AdaBN()(self.layers[-1])]
elif nunits == 'drop':
self.layers += [Dropout(droprate)(self.layers[-1])]
elif nunits == 'act':
if activations == 'prelu':
self.layers += [PReLU()(self.layers[-1])]
elif activations == 'elu':
self.layers += [ELU()(self.layers[-1])]
elif activations == 'leakyrelu':
self.layers += [LeakyReLU()(self.layers[-1])]
else:
self.layers += [Activation(activations)(self.layers[-1])]
else:
print 'Unrecognised layer {}, type: {}'.format(nunits, type(nunits))
self.layers += [Dense(1, activation='sigmoid')(self.layers[-1])]
self.model = Model(self.layers[0], self.layers[-1])
self.model.compile(loss='binary_crossentropy', optimizer=optimizer)
示例12: _build
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def _build(self, input_layer, arch, activations, noise, droprate, l2reg):
print 'Building network layers...'
network = [input_layer]
for nunits in arch:
print nunits
if isinstance(nunits, int):
network += [Dense(nunits, activation='linear', kernel_regularizer=l1_l2(l1=0.01, l2=l2reg))(network[-1])]
elif nunits == 'noise':
network += [GaussianNoise(noise)(network[-1])]
elif nunits == 'bn':
network += [BatchNormalization()(network[-1])]
elif nunits == 'drop':
network += [Dropout(droprate)(network[-1])]
elif nunits == 'act':
if activations == 'prelu':
network += [PReLU()(network[-1])]
elif activations == 'leakyrelu':
network += [LeakyReLU()(network[-1])]
elif activations == 'elu':
network += [ELU()(network[-1])]
else:
print 'Activation({})'.format(activations)
network += [Activation(activations)(network[-1])]
return network
示例13: _build_model
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max,
activations, noise, droprate, mmd_layer_idx, optimizer):
self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))
self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))
nlayers = len(architecture)
layers_a = [self.inp_a]
layers_b = [self.inp_b]
for i, nunits in enumerate(architecture):
print nunits,
if i in mmd_layer_idx: print '(MMD)'
else: print
if isinstance(nunits, int):
shared_layer = Dense(nunits, activation='linear')
elif nunits == 'noise':
shared_layer = GaussianNoise(noise)
elif nunits == 'bn':
shared_layer = BatchNormalization()
elif nunits == 'drop':
shared_layer = Dropout(droprate)
elif nunits == 'act':
if activations == 'prelu':
shared_layer = PReLU()
elif activations == 'elu':
shared_layer = ELU()
elif activations == 'leakyrelu':
shared_layer = LeakyReLU()
else:
shared_layer = Activation(activations)
layers_a += [shared_layer(layers_a[-1])]
layers_b += [shared_layer(layers_b[-1])]
示例14: activation
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def activation(layer, layer_in, layerId, tensor=True):
out = {}
if (layer['info']['type'] == 'ReLU'):
if ('negative_slope' in layer['params'] and layer['params']['negative_slope'] != 0):
out[layerId] = LeakyReLU(alpha=layer['params']['negative_slope'])
else:
out[layerId] = Activation('relu')
elif (layer['info']['type'] == 'PReLU'):
out[layerId] = PReLU()
elif (layer['info']['type'] == 'ELU'):
out[layerId] = ELU(alpha=layer['params']['alpha'])
elif (layer['info']['type'] == 'ThresholdedReLU'):
out[layerId] = ThresholdedReLU(theta=layer['params']['theta'])
elif (layer['info']['type'] == 'Sigmoid'):
out[layerId] = Activation('sigmoid')
elif (layer['info']['type'] == 'TanH'):
out[layerId] = Activation('tanh')
elif (layer['info']['type'] == 'Softmax'):
out[layerId] = Activation('softmax')
elif (layer['info']['type'] == 'SELU'):
out[layerId] = Activation('selu')
elif (layer['info']['type'] == 'Softplus'):
out[layerId] = Activation('softplus')
elif (layer['info']['type'] == 'Softsign'):
out[layerId] = Activation('softsign')
elif (layer['info']['type'] == 'HardSigmoid'):
out[layerId] = Activation('hard_sigmoid')
elif (layer['info']['type'] == 'Linear'):
out[layerId] = Activation('linear')
if tensor:
out[layerId] = out[layerId](*layer_in)
return out
示例15: build_model
# 需要导入模块: from keras.layers import advanced_activations [as 别名]
# 或者: from keras.layers.advanced_activations import ELU [as 别名]
def build_model(n_classes):
if K.image_dim_ordering() == 'th':
input_shape = (1, N_MEL_BANDS, SEGMENT_DUR)
channel_axis = 1
else:
input_shape = (N_MEL_BANDS, SEGMENT_DUR, 1)
channel_axis = 3
melgram_input = Input(shape=input_shape)
maxpool_const = 4
m_sizes = [5, 80]
n_sizes = [1, 3, 5]
n_filters = [128, 64, 32]
layers = list()
for m_i in m_sizes:
for i, n_i in enumerate(n_sizes):
x = Convolution2D(n_filters[i], m_i, n_i,
border_mode='same',
init='he_normal',
W_regularizer=l2(1e-5),
name=str(n_i)+'_'+str(m_i)+'_'+'conv')(melgram_input)
x = BatchNormalization(axis=channel_axis, mode=0, name=str(n_i)+'_'+str(m_i)+'_'+'bn')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(N_MEL_BANDS/maxpool_const, SEGMENT_DUR/maxpool_const),
name=str(n_i)+'_'+str(m_i)+'_'+'pool')(x)
layers.append(x)
x = merge(layers, mode='concat', concat_axis=channel_axis)
x = Dropout(0.25)(x)
x = Convolution2D(128, 3, 3, init='he_normal', W_regularizer=l2(1e-5), border_mode='same', name='conv2')(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn2')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool2')(x)
x = Dropout(0.25)(x)
x = Convolution2D(128, 3, 3, init='he_normal', W_regularizer=l2(1e-5), border_mode='same', name='conv3')(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn3')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool3')(x)
x = Flatten(name='flatten')(x)
x = Dropout(0.5)(x)
x = Dense(256, init='he_normal', W_regularizer=l2(1e-5), name='fc1')(x)
x = ELU()(x)
x = Dropout(0.5)(x)
x = Dense(n_classes, init='he_normal', W_regularizer=l2(1e-5), activation='softmax', name='prediction')(x)
model = Model(melgram_input, x)
return model