当前位置: 首页>>代码示例>>Python>>正文


Python layers.LSTM属性代码示例

本文整理汇总了Python中keras.layers.LSTM属性的典型用法代码示例。如果您正苦于以下问题:Python layers.LSTM属性的具体用法?Python layers.LSTM怎么用?Python layers.LSTM使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在keras.layers的用法示例。


在下文中一共展示了layers.LSTM属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def create_model(time_window_size, metric):
        model = Sequential()

        model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu',
                         input_shape=(time_window_size, 1)))
        model.add(MaxPooling1D(pool_size=4))

        model.add(LSTM(64))

        model.add(Dense(units=time_window_size, activation='linear'))

        model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])

        # model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])
        # model.compile(optimizer="sgd", loss="mse", metrics=[metric])

        print(model.summary())
        return model 
开发者ID:chen0040,项目名称:keras-anomaly-detection,代码行数:20,代码来源:recurrent.py

示例2: create_network

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def create_network(network_input, n_vocab):
    """ create the structure of the neural network """
    model = Sequential()
    model.add(LSTM(
        512,
        input_shape=(network_input.shape[1], network_input.shape[2]),
        recurrent_dropout=0.3,
        return_sequences=True
    ))
    model.add(LSTM(512, return_sequences=True, recurrent_dropout=0.3,))
    model.add(LSTM(512))
    model.add(BatchNorm())
    model.add(Dropout(0.3))
    model.add(Dense(256))
    model.add(Activation('relu'))
    model.add(BatchNorm())
    model.add(Dropout(0.3))
    model.add(Dense(n_vocab))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

    # Load the weights to each node
    model.load_weights('weights.hdf5')

    return model 
开发者ID:Skuldur,项目名称:Classical-Piano-Composer,代码行数:27,代码来源:predict.py

示例3: RNNModel

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def RNNModel(vocab_size, max_len, rnnConfig, model_type):
	embedding_size = rnnConfig['embedding_size']
	if model_type == 'inceptionv3':
		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(2048,))
	elif model_type == 'vgg16':
		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(4096,))
	image_model_1 = Dropout(rnnConfig['dropout'])(image_input)
	image_model = Dense(embedding_size, activation='relu')(image_model_1)

	caption_input = Input(shape=(max_len,))
	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
	caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)
	caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)

	# Merging the models and creating a softmax classifier
	final_model_1 = concatenate([image_model, caption_model])
	final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)
	final_model = Dense(vocab_size, activation='softmax')(final_model_2)

	model = Model(inputs=[image_input, caption_input], outputs=final_model)
	model.compile(loss='categorical_crossentropy', optimizer='adam')
	return model 
开发者ID:dabasajay,项目名称:Image-Caption-Generator,代码行数:27,代码来源:model.py

示例4: get_model_41

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def get_model_41(params):
    embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb"))
    # main sequential model
    model = Sequential()
    model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],
                        weights=embedding_weights))
    #model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))
    model.add(LSTM(2048))
    #model.add(Dropout(params['dropout_prob'][1]))
    model.add(Dense(output_dim=params["n_out"], init="uniform"))
    model.add(Activation(params['final_activation']))
    logging.debug("Output CNN: %s" % str(model.output_shape))

    if params['final_activation'] == 'linear':
        model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))

    return model


# CRNN Arch for audio 
开发者ID:sergiooramas,项目名称:tartarus,代码行数:22,代码来源:models.py

示例5: train_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def train_model():
    if cxl_model:
        embedding_matrix = load_embedding()
    else:
        embedding_matrix = {}
    train, label = vocab_train_label(train_path, vocab=vocab, tags=tag, max_chunk_length=length)
    n = np.array(label, dtype=np.float)
    labels = n.reshape((n.shape[0], n.shape[1], 1))
    model = Sequential([
        Embedding(input_dim=len(vocab), output_dim=300, mask_zero=True, input_length=length, weights=[embedding_matrix],
                  trainable=False),
        SpatialDropout1D(0.2),
        Bidirectional(layer=LSTM(units=150, return_sequences=True, dropout=0.2, recurrent_dropout=0.2)),
        TimeDistributed(Dense(len(tag), activation=relu)),
    ])
    crf_ = CRF(units=len(tag), sparse_target=True)
    model.add(crf_)
    model.compile(optimizer=Adam(), loss=crf_.loss_function, metrics=[crf_.accuracy])
    model.fit(x=np.array(train), y=labels, batch_size=16, epochs=4, callbacks=[RemoteMonitor()])
    model.save(model_path) 
开发者ID:jtyoui,项目名称:Jtyoui,代码行数:22,代码来源:NER.py

示例6: create_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def create_model():
    inputs = Input(shape=(length,), dtype='int32', name='inputs')
    embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)
    bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)
    bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)
    embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)
    con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)
    con_d = Dropout(DROPOUT_RATE)(con)
    dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)
    rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)
    dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)
    crf = CRF(len(chunk_tags), sparse_target=True)
    crf_output = crf(dense)
    model = Model(input=[inputs], output=[crf_output])
    model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])
    return model 
开发者ID:jtyoui,项目名称:Jtyoui,代码行数:18,代码来源:cnn_rnn_crf.py

示例7: __init__

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def __init__(self, use_gpu: bool = False):
        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense, Embedding
        from keras.layers import LSTM
        from keras.backend import set_session

        latent_dim = StructureModel.SEQUENCE_LENGTH * 8

        model = Sequential()
        model.add(
            Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES,
                      input_length=StructureModel.SEQUENCE_LENGTH))
        model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False))
        model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax'))
        model.summary()
        model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
        self.model = model

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
开发者ID:csvance,项目名称:armchair-expert,代码行数:25,代码来源:structure.py

示例8: get_audio_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def get_audio_model(self):

		# Modality specific hyperparameters
		self.epochs = 100
		self.batch_size = 50

		# Modality specific parameters
		self.embedding_dim = self.train_x.shape[2]

		print("Creating Model...")
		
		inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')
		masked = Masking(mask_value =0)(inputs)
		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked)
		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(lstm)
		output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)

		model = Model(inputs, output)
		return model 
开发者ID:declare-lab,项目名称:MELD,代码行数:21,代码来源:baseline.py

示例9: get_bimodal_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def get_bimodal_model(self):

		# Modality specific hyperparameters
		self.epochs = 100
		self.batch_size = 10

		# Modality specific parameters
		self.embedding_dim = self.train_x.shape[2]

		print("Creating Model...")
		
		inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')
		masked = Masking(mask_value =0)(inputs)
		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(masked)
		output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)

		model = Model(inputs, output)
		return model 
开发者ID:declare-lab,项目名称:MELD,代码行数:20,代码来源:baseline.py

示例10: _build

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def _build(self):
        # the model that will be trained
        rnn_x = Input(shape=(None, Z_DIM + ACTION_DIM))
        lstm = LSTM(HIDDEN_UNITS, return_sequences=True, return_state=True)

        lstm_output, _, _ = lstm(rnn_x)
        mdn = Dense(Z_DIM)(lstm_output)

        rnn = Model(rnn_x, mdn)

        # the model used during prediction
        state_input_h = Input(shape=(HIDDEN_UNITS,))
        state_input_c = Input(shape=(HIDDEN_UNITS,))
        state_inputs = [state_input_h, state_input_c]
        
        _, state_h, state_c = lstm(rnn_x, initial_state=state_inputs)
        forward = Model([rnn_x] + state_inputs, [state_h, state_c])

        optimizer = Adam(lr=0.0001)
        # optimizer = SGD(lr=0.0001, decay=1e-4, momentum=0.9, nesterov=True)
        rnn.compile(loss='mean_squared_error', optimizer=optimizer)

        return [rnn, forward] 
开发者ID:marooncn,项目名称:navbot,代码行数:25,代码来源:RNN.py

示例11: _build_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def _build_model(self, num_features, num_actions, max_history_len):
        """Build a keras model and return a compiled model.
        :param max_history_len: The maximum number of historical turns used to
                                decide on next action"""
        from keras.layers import LSTM, Activation, Masking, Dense
        from keras.models import Sequential

        n_hidden = 32  # size of hidden layer in LSTM
        # Build Model
        batch_shape = (None, max_history_len, num_features)

        model = Sequential()
        model.add(Masking(-1, batch_input_shape=batch_shape))
        model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
        model.add(Dense(input_dim=n_hidden, output_dim=num_actions))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy',
                      optimizer='adam',
                      metrics=['accuracy'])

        logger.debug(model.summary())
        return model 
开发者ID:Rowl1ng,项目名称:rasa_wechat,代码行数:25,代码来源:mom_example.py

示例12: _build_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def _build_model(self, num_features, num_actions, max_history_len):
        """Build a keras model and return a compiled model.

        :param max_history_len: The maximum number of historical
                                turns used to decide on next action
        """
        from keras.layers import LSTM, Activation, Masking, Dense
        from keras.models import Sequential

        n_hidden = 32  # Neural Net and training params
        batch_shape = (None, max_history_len, num_features)
        # Build Model
        model = Sequential()
        model.add(Masking(-1, batch_input_shape=batch_shape))
        model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
        model.add(Dense(input_dim=n_hidden, units=num_actions))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy',
                      optimizer='rmsprop',
                      metrics=['accuracy'])

        logger.debug(model.summary())
        return model 
开发者ID:Rowl1ng,项目名称:rasa_wechat,代码行数:26,代码来源:keras_policy.py

示例13: GeneratorPretraining

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def GeneratorPretraining(V, E, H):
    '''
    Model for Generator pretraining. This model's weights should be shared with
        Generator.
    # Arguments:
        V: int, Vocabrary size
        E: int, Embedding size
        H: int, LSTM hidden size
    # Returns:
        generator_pretraining: keras Model
            input: word ids, shape = (B, T)
            output: word probability, shape = (B, T, V)
    '''
    # in comment, B means batch size, T means lengths of time steps.
    input = Input(shape=(None,), dtype='int32', name='Input') # (B, T)
    out = Embedding(V, E, mask_zero=True, name='Embedding')(input) # (B, T, E)
    out = LSTM(H, return_sequences=True, name='LSTM')(out)  # (B, T, H)
    out = TimeDistributed(
        Dense(V, activation='softmax', name='DenseSoftmax'),
        name='TimeDenseSoftmax')(out)    # (B, T, V)
    generator_pretraining = Model(input, out)
    return generator_pretraining 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:24,代码来源:models.py

示例14: __init__

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def __init__(self, sess, B, V, E, H, lr=1e-3):
        '''
        # Arguments:
            B: int, Batch size
            V: int, Vocabrary size
            E: int, Embedding size
            H: int, LSTM hidden size
        # Optional Arguments:
            lr: float, learning rate, default is 0.001
        '''
        self.sess = sess
        self.B = B
        self.V = V
        self.E = E
        self.H = H
        self.lr = lr
        self._build_gragh()
        self.reset_rnn_state() 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:20,代码来源:models.py

示例15: Discriminator

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import LSTM [as 别名]
def Discriminator(V, E, H=64, dropout=0.1):
    '''
    Disciriminator model.
    # Arguments:
        V: int, Vocabrary size
        E: int, Embedding size
        H: int, LSTM hidden size
        dropout: float
    # Returns:
        discriminator: keras model
            input: word ids, shape = (B, T)
            output: probability of true data or not, shape = (B, 1)
    '''
    input = Input(shape=(None,), dtype='int32', name='Input')   # (B, T)
    out = Embedding(V, E, mask_zero=True, name='Embedding')(input)  # (B, T, E)
    out = LSTM(H)(out)
    out = Highway(out, num_layers=1)
    out = Dropout(dropout, name='Dropout')(out)
    out = Dense(1, activation='sigmoid', name='FC')(out)

    discriminator = Model(input, out)
    return discriminator 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:24,代码来源:models.py


注:本文中的keras.layers.LSTM属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。