本文整理汇总了Python中inception.slim.ops.UPDATE_OPS_COLLECTION属性的典型用法代码示例。如果您正苦于以下问题:Python ops.UPDATE_OPS_COLLECTION属性的具体用法?Python ops.UPDATE_OPS_COLLECTION怎么用?Python ops.UPDATE_OPS_COLLECTION使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类inception.slim.ops
的用法示例。
在下文中一共展示了ops.UPDATE_OPS_COLLECTION属性的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testUpdateOps
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testUpdateOps(self):
height, width = 3, 3
with self.test_session():
images = tf.random_uniform((5, height, width, 3), seed=1)
ops.batch_norm(images)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
update_moving_mean = update_ops[0]
update_moving_variance = update_ops[1]
self.assertEquals(update_moving_mean.op.name,
'BatchNorm/AssignMovingAvg')
self.assertEquals(update_moving_variance.op.name,
'BatchNorm/AssignMovingAvg_1')
示例2: testReuseUpdateOps
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testReuseUpdateOps(self):
height, width = 3, 3
with self.test_session():
images = tf.random_uniform((5, height, width, 3), seed=1)
ops.batch_norm(images, scope='bn')
self.assertEquals(len(tf.get_collection(ops.UPDATE_OPS_COLLECTION)), 2)
ops.batch_norm(images, scope='bn', reuse=True)
self.assertEquals(len(tf.get_collection(ops.UPDATE_OPS_COLLECTION)), 4)
示例3: testComputeMovingVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testComputeMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
output = tf.identity(output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
for _ in range(10):
sess.run([output])
mean = moving_mean.eval()
variance = moving_variance.eval()
# After 10 updates with decay 0.1 moving_mean == expected_mean and
# moving_variance == expected_var.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例4: testEvalMovingVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testEvalMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
output = tf.identity(output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例5: testReuseVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testReuseVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
output = tf.identity(output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例6: testComputeMovingVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testComputeMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='gradient_barrier')
output = control_flow_ops.with_dependencies([barrier], output)
# Initialize all variables
sess.run(tf.initialize_all_variables())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
for _ in range(10):
sess.run([output])
mean = moving_mean.eval()
variance = moving_variance.eval()
# After 10 updates with decay 0.1 moving_mean == expected_mean and
# moving_variance == expected_var.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例7: testEvalMovingVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testEvalMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='gradient_barrier')
output = control_flow_ops.with_dependencies([barrier], output)
# Initialize all variables
sess.run(tf.initialize_all_variables())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例8: testReuseVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testReuseVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='gradient_barrier')
output = control_flow_ops.with_dependencies([barrier], output)
# Initialize all variables
sess.run(tf.initialize_all_variables())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例9: testComputeMovingVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testComputeMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='gradient_barrier')
output = control_flow_ops.with_dependencies([barrier], output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
for _ in range(10):
sess.run([output])
mean = moving_mean.eval()
variance = moving_variance.eval()
# After 10 updates with decay 0.1 moving_mean == expected_mean and
# moving_variance == expected_var.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例10: testEvalMovingVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testEvalMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='gradient_barrier')
output = control_flow_ops.with_dependencies([barrier], output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例11: testReuseVars
# 需要导入模块: from inception.slim import ops [as 别名]
# 或者: from inception.slim.ops import UPDATE_OPS_COLLECTION [as 别名]
def testReuseVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='gradient_barrier')
output = control_flow_ops.with_dependencies([barrier], output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)