本文整理汇总了Python中fast_rcnn.config.cfg.PIXEL_MEANS属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.PIXEL_MEANS属性的具体用法?Python cfg.PIXEL_MEANS怎么用?Python cfg.PIXEL_MEANS使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类fast_rcnn.config.cfg
的用法示例。
在下文中一共展示了cfg.PIXEL_MEANS属性的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_image_blob
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
im_shapes = np.zeros((0, 2), dtype=np.float32)
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size)
im_scales.append(im_scale)
processed_ims.append(im)
im_shapes = np.vstack((im_shapes, im_shape))
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales, im_shapes
示例2: setup
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def setup(self, bottom, top):
# (1, 3, 1, 1) shaped arrays
self.PIXEL_MEANS = \
np.array([[[[0.48462227599918]],
[[0.45624044862054]],
[[0.40588363755159]]]])
self.PIXEL_STDS = \
np.array([[[[0.22889466674951]],
[[0.22446679341259]],
[[0.22495548344775]]]])
# The default ("old") pixel means that were already subtracted
channel_swap = (0, 3, 1, 2)
self.OLD_PIXEL_MEANS = \
cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)
top[0].reshape(*(bottom[0].shape))
示例3: _get_image_blob
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例4: _vis_minibatch
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
"""Visualize a mini-batch for debugging."""
import matplotlib.pyplot as plt
for i in xrange(rois_blob.shape[0]):
rois = rois_blob[i, :]
im_ind = rois[0]
roi = rois[1:]
im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
im += cfg.PIXEL_MEANS
im = im[:, :, (2, 1, 0)]
im = im.astype(np.uint8)
cls = labels_blob[i]
plt.imshow(im)
print 'class: ', cls, ' overlap: ', overlaps[i]
plt.gca().add_patch(
plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
roi[3] - roi[1], fill=False,
edgecolor='r', linewidth=3)
)
plt.show()
示例5: _get_image_blob
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in xrange(num_images):
im = roidb[i]['image']() # use image getter
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例6: _get_image_blob
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例7: _get_image_blob_multiscale
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _get_image_blob_multiscale(roidb):
"""Builds an input blob from the images in the roidb at multiscales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
scales = cfg.TRAIN.SCALES_BASE
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
for im_scale in scales:
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
示例8: _vis_minibatch
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _vis_minibatch(im_blob, rois_blob, labels_blob, sublabels_blob):
"""Visualize a mini-batch for debugging."""
import matplotlib.pyplot as plt
for i in xrange(rois_blob.shape[0]):
rois = rois_blob[i, :]
im_ind = rois[0]
roi = rois[2:]
im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
im += cfg.PIXEL_MEANS
im = im[:, :, (2, 1, 0)]
im = im.astype(np.uint8)
cls = labels_blob[i]
subcls = sublabels_blob[i]
plt.imshow(im)
print 'class: ', cls, ' subclass: ', subcls
plt.gca().add_patch(
plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
roi[3] - roi[1], fill=False,
edgecolor='r', linewidth=3)
)
plt.show()
示例9: _vis_minibatch
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
"""Visualize a mini-batch for debugging."""
import matplotlib.pyplot as plt
for i in xrange(rois_blob.shape[0]):
rois = rois_blob[i, :]
im_ind = rois[0]
roi = rois[1:]
im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
im += cfg.PIXEL_MEANS
im = im[:, :, (2, 1, 0)]
im = im.astype(np.uint8)
cls = labels_blob[i]
plt.imshow(im)
print 'class: ', cls, ' overlap: ', overlaps[i]
plt.gca().add_patch(
plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
roi[3] - roi[1], fill=False,
edgecolor='r', linewidth=3)
)
plt.show()
示例10: _process_images
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _process_images(roidb):
"""Builds an input blob from the images in the roidb
"""
num_images = len(roidb)
processed_ims = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
processed_ims.append(im_orig)
return processed_ims
示例11: _get_image_blob
# 需要导入模块: from fast_rcnn.config import cfg [as 别名]
# 或者: from fast_rcnn.config.cfg import PIXEL_MEANS [as 别名]
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
im_shapes = np.zeros((0, 2), dtype=np.float32)
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS,
target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
im_shapes = np.vstack((im_shapes, im_shape))
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales, im_shapes