当前位置: 首页>>代码示例>>Python>>正文


Python faiss.METRIC_INNER_PRODUCT属性代码示例

本文整理汇总了Python中faiss.METRIC_INNER_PRODUCT属性的典型用法代码示例。如果您正苦于以下问题:Python faiss.METRIC_INNER_PRODUCT属性的具体用法?Python faiss.METRIC_INNER_PRODUCT怎么用?Python faiss.METRIC_INNER_PRODUCT使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在faiss的用法示例。


在下文中一共展示了faiss.METRIC_INNER_PRODUCT属性的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: faiss_train

# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import METRIC_INNER_PRODUCT [as 别名]
def faiss_train(fn_feature, root_path, index_path='train.index', id_path='data.json'):
    folder_names = os.listdir(root_path)
    logging.info('directory %s ', folder_names)
    ids = None
    vals = None
    id_json = {}
    print(folder_names)
    for idx, folder_name in enumerate(folder_names):
        id_json[str(idx)] = folder_name
        now_path = os.path.join(root_path, folder_name)
        feature_val = fn_feature(now_path)
        vals = np.concatenate((feature_val, vals), axis=0) if vals is not None else feature_val
        id_np = np.asarray([idx] * feature_val.shape[0])
        ids = np.concatenate((id_np, ids), axis=0) if ids is not None else id_np
    N, dim = vals.shape
    x = int(2 * math.sqrt(N))
    index_description = "IVF{x},Flat".format(x=x)
    index = faiss.index_factory(7 * 7 * 512, index_description, faiss.METRIC_INNER_PRODUCT)
    index.train(vals)
    index.add_with_ids(vals, ids)
    faiss.write_index(index, index_path)
    with open(id_path, 'w', encoding='utf-8') as f:
        json.dump(id_json, f, ensure_ascii=False, indent=4)
    print(id_json)
    return index, id_json 
开发者ID:seongahjo,项目名称:Mosaicer,代码行数:27,代码来源:train.py

示例2: _faiss_knn

# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import METRIC_INNER_PRODUCT [as 别名]
def _faiss_knn(keys: torch.Tensor,
               queries: torch.Tensor,
               num_neighbors: int,
               distance: str) -> Tuple[torch.Tensor, torch.Tensor]:
    # https://github.com/facebookresearch/XLM/blob/master/src/model/memory/utils.py
    if not is_faiss_available():
        raise RuntimeError("faiss_knn requires faiss-gpu")
    import faiss

    assert distance in ['dot_product', 'l2']
    assert keys.size(1) == queries.size(1)

    metric = faiss.METRIC_INNER_PRODUCT if distance == 'dot_product' else faiss.METRIC_L2

    k_ptr = _tensor_to_ptr(keys)
    q_ptr = _tensor_to_ptr(queries)

    scores = keys.new_zeros((queries.size(0), num_neighbors), dtype=torch.float32)
    indices = keys.new_zeros((queries.size(0), num_neighbors), dtype=torch.int64)

    s_ptr = _tensor_to_ptr(scores)
    i_ptr = _tensor_to_ptr(indices)

    faiss.bruteForceKnn(FAISS_RES, metric,
                        k_ptr, True, keys.size(0),
                        q_ptr, True, queries.size(0),
                        queries.size(1), num_neighbors, s_ptr, i_ptr)
    return scores, indices 
开发者ID:moskomule,项目名称:homura,代码行数:30,代码来源:knn.py

示例3: cluster

# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import METRIC_INNER_PRODUCT [as 别名]
def cluster(features, th_knn, max_size=300, labels=None):
    '''
    与face-train不同,这里聚类的相似度没有经过1-转换
    :param features:
    :param th_knn:
    :param max_size:
    :return:
    '''
    k = 80
    nprobe = 8

    # knn
    size, dim = features.shape
    metric = faiss.METRIC_INNER_PRODUCT
    nlist = min(4096, 8 * round(math.sqrt(size)))
    if size < 4 * 10000:
        fac_str = "Flat"  # same
    elif size < 80 * 10000:
        fac_str = "IVF" + str(nlist) + ",Flat"  # same
    elif size < 200 * 10000:
        fac_str = "IVF16384,Flat"  # same
    else:
        fac_str = "IVF16384,PQ8"  # same
    logger.info("cdp cluster fac str %s", fac_str)
    index = faiss.index_factory(dim, fac_str, metric)
    index.train(features)
    index.nprobe = min(nprobe, nlist)
    assert index.is_trained
    logger.info('cdp cluster nlist: {}, nprobe: {}'.format(nlist, nprobe))
    index.add(features)

    sims, ners = index.search(features, k=k)
    if "Flat" not in fac_str:
        sims = sim_by_feature(features, features, ners)
    knns = np.concatenate([sims[:, np.newaxis].astype(np.float32), ners[:, np.newaxis].astype(np.float32)], axis=1)
    # del features

    return cluster_by_knns(knns, features, th_knn, max_size, labels) 
开发者ID:Kestrong,项目名称:capture_reid,代码行数:40,代码来源:cdp.py

示例4: fit

# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import METRIC_INNER_PRODUCT [as 别名]
def fit(self, Ciu, show_progress=True):
        import faiss

        # train the model
        super(FaissAlternatingLeastSquares, self).fit(Ciu, show_progress)

        self.quantizer = faiss.IndexFlat(self.factors)

        if self.use_gpu:
            self.gpu_resources = faiss.StandardGpuResources()

        item_factors = self.item_factors.astype('float32')

        if self.approximate_recommend:
            log.debug("Building faiss recommendation index")

            # build up a inner product index here
            if self.use_gpu:
                index = faiss.GpuIndexIVFFlat(self.gpu_resources, self.factors, self.nlist,
                                              faiss.METRIC_INNER_PRODUCT)
            else:
                index = faiss.IndexIVFFlat(self.quantizer, self.factors, self.nlist,
                                           faiss.METRIC_INNER_PRODUCT)

            index.train(item_factors)
            index.add(item_factors)
            index.nprobe = self.nprobe
            self.recommend_index = index

        if self.approximate_similar_items:
            log.debug("Building faiss similar items index")

            # likewise build up cosine index for similar_items, using an inner product
            # index on normalized vectors`
            norms = numpy.linalg.norm(item_factors, axis=1)
            norms[norms == 0] = 1e-10

            normalized = (item_factors.T / norms).T.astype('float32')
            if self.use_gpu:
                index = faiss.GpuIndexIVFFlat(self.gpu_resources, self.factors, self.nlist,
                                              faiss.METRIC_INNER_PRODUCT)
            else:
                index = faiss.IndexIVFFlat(self.quantizer, self.factors, self.nlist,
                                           faiss.METRIC_INNER_PRODUCT)

            index.train(normalized)
            index.add(normalized)
            index.nprobe = self.nprobe
            self.similar_items_index = index 
开发者ID:benfred,项目名称:implicit,代码行数:51,代码来源:approximate_als.py

示例5: __init__

# 需要导入模块: import faiss [as 别名]
# 或者: from faiss import METRIC_INNER_PRODUCT [as 别名]
def __init__(self,
                 feats,
                 k,
                 index_path='',
                 index_key='',
                 nprobe=128,
                 omp_num_threads=None,
                 rebuild_index=True,
                 verbose=True,
                 **kwargs):
        import faiss
        if omp_num_threads is not None:
            faiss.omp_set_num_threads(omp_num_threads)
        self.verbose = verbose
        with Timer('[faiss] build index', verbose):
            if index_path != '' and not rebuild_index and os.path.exists(
                    index_path):
                print('[faiss] read index from {}'.format(index_path))
                index = faiss.read_index(index_path)
            else:
                feats = feats.astype('float32')
                size, dim = feats.shape
                index = faiss.IndexFlatIP(dim)
                if index_key != '':
                    assert index_key.find(
                        'HNSW') < 0, 'HNSW returns distances insted of sims'
                    metric = faiss.METRIC_INNER_PRODUCT
                    nlist = min(4096, 8 * round(math.sqrt(size)))
                    if index_key == 'IVF':
                        quantizer = index
                        index = faiss.IndexIVFFlat(quantizer, dim, nlist,
                                                   metric)
                    else:
                        index = faiss.index_factory(dim, index_key, metric)
                    if index_key.find('Flat') < 0:
                        assert not index.is_trained
                    index.train(feats)
                    index.nprobe = min(nprobe, nlist)
                    assert index.is_trained
                    print('nlist: {}, nprobe: {}'.format(nlist, nprobe))
                index.add(feats)
                if index_path != '':
                    print('[faiss] save index to {}'.format(index_path))
                    mkdir_if_no_exists(index_path)
                    faiss.write_index(index, index_path)
        with Timer('[faiss] query topk {}'.format(k), verbose):
            knn_ofn = index_path + '.npz'
            if os.path.exists(knn_ofn):
                print('[faiss] read knns from {}'.format(knn_ofn))
                self.knns = np.load(knn_ofn)['data']
            else:
                sims, nbrs = index.search(feats, k=k)
                self.knns = [(np.array(nbr, dtype=np.int32),
                              1 - np.array(sim, dtype=np.float32))
                             for nbr, sim in zip(nbrs, sims)] 
开发者ID:yl-1993,项目名称:learn-to-cluster,代码行数:57,代码来源:knn.py


注:本文中的faiss.METRIC_INNER_PRODUCT属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。