当前位置: 首页>>代码示例>>Python>>正文


Python common.IMAGE_NAME属性代码示例

本文整理汇总了Python中deeplab.common.IMAGE_NAME属性的典型用法代码示例。如果您正苦于以下问题:Python common.IMAGE_NAME属性的具体用法?Python common.IMAGE_NAME怎么用?Python common.IMAGE_NAME使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在deeplab.common的用法示例。


在下文中一共展示了common.IMAGE_NAME属性的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_data

# 需要导入模块: from deeplab import common [as 别名]
# 或者: from deeplab.common import IMAGE_NAME [as 别名]
def _get_data(data_provider, dataset_split):
  """Gets data from data provider.

  Args:
    data_provider: An object of slim.data_provider.
    dataset_split: Dataset split.

  Returns:
    image: Image Tensor.
    label: Label Tensor storing segmentation annotations.
    image_name: Image name.
    height: Image height.
    width: Image width.

  Raises:
    ValueError: Failed to find label.
  """
  if common.LABELS_CLASS not in data_provider.list_items():
    raise ValueError('Failed to find labels.')

  image, height, width = data_provider.get(
      [common.IMAGE, common.HEIGHT, common.WIDTH])

  # Some datasets do not contain image_name.
  if common.IMAGE_NAME in data_provider.list_items():
    image_name, = data_provider.get([common.IMAGE_NAME])
  else:
    image_name = tf.constant('')

  label = None
  if dataset_split != common.TEST_SET:
    label, = data_provider.get([common.LABELS_CLASS])

  return image, label, image_name, height, width 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:36,代码来源:input_generator.py

示例2: testPascalVocSegTestData

# 需要导入模块: from deeplab import common [as 别名]
# 或者: from deeplab.common import IMAGE_NAME [as 别名]
def testPascalVocSegTestData(self):
    dataset = data_generator.Dataset(
        dataset_name='pascal_voc_seg',
        split_name='val',
        dataset_dir=
        'deeplab/testing/pascal_voc_seg',
        batch_size=1,
        crop_size=[3, 3],  # Use small size for testing.
        min_resize_value=3,
        max_resize_value=3,
        resize_factor=None,
        min_scale_factor=0.01,
        max_scale_factor=2.0,
        scale_factor_step_size=0.25,
        is_training=False,
        model_variant='mobilenet_v2')

    self.assertAllEqual(dataset.num_of_classes, 21)
    self.assertAllEqual(dataset.ignore_label, 255)

    num_of_images = 3
    with self.test_session() as sess:
      iterator = dataset.get_one_shot_iterator()

      for i in range(num_of_images):
        batch = iterator.get_next()
        batch, = sess.run([batch])
        image_attributes = _get_attributes_of_image(i)

        self.assertAllEqual(batch[common.IMAGE][0], image_attributes.image)
        self.assertAllEqual(batch[common.LABEL][0], image_attributes.label)
        self.assertEqual(batch[common.HEIGHT][0], image_attributes.height)
        self.assertEqual(batch[common.WIDTH][0], image_attributes.width)
        self.assertEqual(batch[common.IMAGE_NAME][0],
                         image_attributes.image_name)

      # All data have been read.
      with self.assertRaisesRegexp(tf.errors.OutOfRangeError, ''):
        sess.run([iterator.get_next()]) 
开发者ID:IBM,项目名称:MAX-Image-Segmenter,代码行数:41,代码来源:data_generator_test.py

示例3: testPascalVocSegTestData

# 需要导入模块: from deeplab import common [as 别名]
# 或者: from deeplab.common import IMAGE_NAME [as 别名]
def testPascalVocSegTestData(self):
    dataset = data_generator.Dataset(
        dataset_name='pascal_voc_seg',
        split_name='val',
        dataset_dir=
        'deeplab/testing/pascal_voc_seg',
        batch_size=1,
        crop_size=[3, 3],  # Use small size for testing.
        min_resize_value=3,
        max_resize_value=3,
        resize_factor=None,
        min_scale_factor=0.01,
        max_scale_factor=2.0,
        scale_factor_step_size=0.25,
        is_training=False,
        model_variant='mobilenet_v2')

    self.assertAllEqual(dataset.num_of_classes, 21)
    self.assertAllEqual(dataset.ignore_label, 255)

    num_of_images = 3
    with self.test_session() as sess:
      iterator = dataset.get_one_shot_iterator()

      for i in range(num_of_images):
        batch = iterator.get_next()
        batch, = sess.run([batch])
        image_attributes = _get_attributes_of_image(i)
        self.assertEqual(batch[common.HEIGHT][0], image_attributes.height)
        self.assertEqual(batch[common.WIDTH][0], image_attributes.width)
        self.assertEqual(batch[common.IMAGE_NAME][0],
                         image_attributes.image_name.encode())

      # All data have been read.
      with self.assertRaisesRegexp(tf.errors.OutOfRangeError, ''):
        sess.run([iterator.get_next()]) 
开发者ID:tensorflow,项目名称:models,代码行数:38,代码来源:data_generator_test.py


注:本文中的deeplab.common.IMAGE_NAME属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。