本文整理汇总了Python中data.UNKNOWN_TOKEN属性的典型用法代码示例。如果您正苦于以下问题:Python data.UNKNOWN_TOKEN属性的具体用法?Python data.UNKNOWN_TOKEN怎么用?Python data.UNKNOWN_TOKEN使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类data
的用法示例。
在下文中一共展示了data.UNKNOWN_TOKEN属性的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _add_decoder
# 需要导入模块: import data [as 别名]
# 或者: from data import UNKNOWN_TOKEN [as 别名]
def _add_decoder(self, emb_dec_inputs, embedding):
"""Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.
Args:
emb_dec_inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
embedding: embedding matrix (vocab_size, emb_dim)
Returns:
outputs: List of tensors; the outputs of the decoder
out_state: The final state of the decoder
attn_dists: A list of tensors; the attention distributions
p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
coverage: A tensor, the current coverage vector
"""
hps = self._hps
cell = tf.contrib.rnn.LSTMCell(hps.dec_hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)
prev_coverage = self.prev_coverage if (hps.mode=="decode" and hps.coverage) else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
prev_decoder_outputs = self.prev_decoder_outputs if (hps.intradecoder and hps.mode=="decode") else tf.stack([],axis=0)
prev_encoder_es = self.prev_encoder_es if (hps.use_temporal_attention and hps.mode=="decode") else tf.stack([],axis=0)
return attention_decoder(_hps=hps,
v_size=self._vocab.size(),
_max_art_oovs=self._max_art_oovs,
_enc_batch_extend_vocab=self._enc_batch_extend_vocab,
emb_dec_inputs=emb_dec_inputs,
target_batch=self._target_batch,
_dec_in_state=self._dec_in_state,
_enc_states=self._enc_states,
enc_padding_mask=self._enc_padding_mask,
dec_padding_mask=self._dec_padding_mask,
cell=cell,
embedding=embedding,
sampling_probability=self._sampling_probability if FLAGS.scheduled_sampling else 0,
alpha=self._alpha if FLAGS.E2EBackProp else 0,
unk_id=self._vocab.word2id(data.UNKNOWN_TOKEN),
initial_state_attention=(hps.mode=="decode"),
pointer_gen=hps.pointer_gen,
use_coverage=hps.coverage,
prev_coverage=prev_coverage,
prev_decoder_outputs=prev_decoder_outputs,
prev_encoder_es = prev_encoder_es)
示例2: _add_decoder
# 需要导入模块: import data [as 别名]
# 或者: from data import UNKNOWN_TOKEN [as 别名]
def _add_decoder(self, emb_dec_inputs, embedding):
"""Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.
Args:
emb_dec_inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
embedding: embedding matrix (vocab_size, emb_dim)
Returns:
outputs: List of tensors; the outputs of the decoder
out_state: The final state of the decoder
attn_dists: A list of tensors; the attention distributions
p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
coverage: A tensor, the current coverage vector
"""
hps = self._hps
cell = tf.contrib.rnn.LSTMCell(hps.dec_hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)
prev_coverage = self.prev_coverage if (hps.mode=="decode" and hps.coverage) else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
prev_decoder_outputs = self.prev_decoder_outputs if (hps.intradecoder and hps.mode=="decode") else tf.stack([],axis=0)
prev_encoder_es = self.prev_encoder_es if (hps.use_temporal_attention and hps.mode=="decode") else tf.stack([],axis=0)
return attention_decoder(hps,
self._vocab.size(),
self._max_art_oovs,
self._enc_batch_extend_vocab,
emb_dec_inputs,
self._target_batch,
self._dec_in_state,
self._enc_states,
self._enc_padding_mask,
self._dec_padding_mask,
cell,
embedding,
self._sampling_probability if FLAGS.scheduled_sampling else 0,
self._alpha if FLAGS.E2EBackProp else 0,
self._vocab.word2id(data.UNKNOWN_TOKEN),
initial_state_attention=(hps.mode=="decode"),
pointer_gen=hps.pointer_gen,
use_coverage=hps.coverage,
prev_coverage=prev_coverage,
prev_decoder_outputs=prev_decoder_outputs,
prev_encoder_es = prev_encoder_es)
示例3: main
# 需要导入模块: import data [as 别名]
# 或者: from data import UNKNOWN_TOKEN [as 别名]
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.CheckVocab(data.PAD_TOKEN) > 0
assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0
assert vocab.CheckVocab(data.SENTENCE_START) > 0
assert vocab.CheckVocab(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()
示例4: main
# 需要导入模块: import data [as 别名]
# 或者: from data import UNKNOWN_TOKEN [as 别名]
def main(unused_argv):
config = importlib.import_module('config.%s' % FLAGS.config)
for argument in FLAGS.override.split(','):
if '=' in argument:
name = argument.split('=')[0]
value = type(getattr(config, name))(argument.split('=')[1])
setattr(config, name, value)
config.input_vocab = data.Vocab(config.input_vocab_file,
config.max_vocab_size) # Max IDs
if config.input_vocab.WordToId(data.PAD_TOKEN) <= 0:
raise ValueError('Invalid PAD_TOKEN id.')
# id of the UNKNOWN_TOKEN should be "0" for copynet model
if config.input_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
raise ValueError('Invalid UNKOWN_TOKEN id.')
if config.input_vocab.WordToId(data.SENTENCE_START) <= 0:
raise ValueError('Invalid SENTENCE_START id.')
if config.input_vocab.WordToId(data.SENTENCE_END) <= 0:
raise ValueError('Invalid SENTENCE_END id.')
if config.output_vocab_file:
config.output_vocab = data.Vocab(config.output_vocab_file,
config.max_vocab_size) # Max IDs
if config.output_vocab.WordToId(data.PAD_TOKEN) <= 0:
raise ValueError('Invalid PAD_TOKEN id.')
# id of the UNKNOWN_TOKEN should be "0" for copynet model
if config.output_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
raise ValueError('Invalid UNKOWN_TOKEN id.')
if config.output_vocab.WordToId(data.SENTENCE_START) <= 0:
raise ValueError('Invalid SENTENCE_START id.')
if config.output_vocab.WordToId(data.SENTENCE_END) <= 0:
raise ValueError('Invalid SENTENCE_END id.')
else:
config.output_vocab = config.input_vocab
train_batcher = config.Batcher(config.train_set, config)
valid_batcher = config.Batcher(config.valid_set, config)
tf.set_random_seed(config.random_seed)
if FLAGS.mode == 'train':
model = config.Model(config, 'train', num_gpus=FLAGS.num_gpus)
_Train(model, config, train_batcher)
elif FLAGS.mode == 'eval':
config.dropout_rnn = 1.0
config.dropout_emb = 1.0
model = config.Model(config, 'eval', num_gpus=FLAGS.num_gpus)
_Eval(model, config, valid_batcher)
elif FLAGS.mode == 'decode':
config.dropout_rnn = 1.0
config.dropout_emb = 1.0
config.batch_size = config.beam_size
model = config.Model(config, 'decode', num_gpus=FLAGS.num_gpus)
decoder = decode.BeamSearch(model, valid_batcher, config)
decoder.DecodeLoop()
示例5: main
# 需要导入模块: import data [as 别名]
# 或者: from data import UNKNOWN_TOKEN [as 别名]
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.WordToId(data.PAD_TOKEN) > 0
assert vocab.WordToId(data.UNKNOWN_TOKEN) >= 0
assert vocab.WordToId(data.SENTENCE_START) > 0
assert vocab.WordToId(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()