本文整理汇总了Python中cv2.WARP_INVERSE_MAP属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.WARP_INVERSE_MAP属性的具体用法?Python cv2.WARP_INVERSE_MAP怎么用?Python cv2.WARP_INVERSE_MAP使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.WARP_INVERSE_MAP属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: deskew
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def deskew(image, image_shape, negated=False):
"""
This method deskwes an image using moments
:param image: a numpy nd array input image
:param image_shape: a tuple denoting the image`s shape
:param negated: a boolean flag telling whether the input image is a negated one
:returns: a numpy nd array deskewd image
"""
# negate the image
if not negated:
image = 255-image
# calculate the moments of the image
m = cv2.moments(image)
if abs(m['mu02']) < 1e-2:
return image.copy()
# caclulating the skew
skew = m['mu11']/m['mu02']
M = numpy.float32([[1, skew, -0.5*image_shape[0]*skew], [0,1,0]])
img = cv2.warpAffine(image, M, image_shape, flags=cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR)
return img
示例2: _getMaskOutput
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def _getMaskOutput(self, netOutput):
netOutput = netOutput.transpose(0, 2, 3, 1)
MaskOutput = [[] for _ in range(self.bz)]
idx = 0
for i, (img, kpts) in enumerate(zip(self.batchimgs, self.batchkpts)):
height, width = img.shape[0:2]
for j in range(len(kpts)):
predmap = netOutput[idx]
H_e2e = self.maskAlignMatrixs[i][j]
pred_e2e = cv2.warpAffine(predmap, H_e2e[0:2], (width, height),
borderMode=cv2.BORDER_CONSTANT,
flags=cv2.WARP_INVERSE_MAP+cv2.INTER_LINEAR)
pred_e2e = pred_e2e[:, :, 1]
pred_e2e[pred_e2e>0.5] = 1
pred_e2e[pred_e2e<=0.5] = 0
mask = pred_e2e.astype(np.uint8)
MaskOutput[i].append(mask)
idx += 1
return MaskOutput
示例3: get_hog
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def get_hog() :
winSize = (20,20)
blockSize = (10,10)
blockStride = (5,5)
cellSize = (10,10)
nbins = 9
derivAperture = 1
winSigma = -1.
histogramNormType = 0
L2HysThreshold = 0.2
gammaCorrection = 1
nlevels = 64
signedGradient = True
hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,histogramNormType,L2HysThreshold,gammaCorrection,nlevels, signedGradient)
return hog
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR
示例4: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def __call__(self, sample):
fg, alpha = sample['fg'], sample['alpha']
rows, cols, ch = fg.shape
if np.maximum(rows, cols) < 1024:
params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
else:
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)
center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
M = self._get_inverse_affine_matrix(center, *params)
M = np.array(M).reshape((2, 3))
fg = cv2.warpAffine(fg, M, (cols, rows),
flags=maybe_random_interp(cv2.INTER_NEAREST) + cv2.WARP_INVERSE_MAP)
alpha = cv2.warpAffine(alpha, M, (cols, rows),
flags=maybe_random_interp(cv2.INTER_NEAREST) + cv2.WARP_INVERSE_MAP)
sample['fg'], sample['alpha'] = fg, alpha
return sample
示例5: get_full_frame_mask
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def get_full_frame_mask(self, width, height):
""" Return the stored mask in a full size frame of the given dimensions
Parameters
----------
width: int
The width of the original frame that the mask was extracted from
height: int
The height of the original frame that the mask was extracted from
Returns
-------
numpy.ndarray: The mask affined to the original full frame of the given dimensions
"""
frame = np.zeros((width, height, 1), dtype="uint8")
mask = cv2.warpAffine(self.mask,
self._affine_matrix,
(width, height),
frame,
flags=cv2.WARP_INVERSE_MAP | self._interpolator,
borderMode=cv2.BORDER_CONSTANT)
logger.trace("mask shape: %s, mask dtype: %s, mask min: %s, mask max: %s",
mask.shape, mask.dtype, mask.min(), mask.max())
return mask
示例6: _align_rois
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def _align_rois(self, face_images, face_landmarks):
assert len(face_images) == len(face_landmarks), \
"Input lengths differ, got %s and %s" % \
(len(face_images), len(face_landmarks))
for image, image_landmarks in zip(face_images, face_landmarks):
assert len(image.shape) == 4, "Face image is expected"
image = image[0]
scale = np.array((image.shape[-1], image.shape[-2]))
desired_landmarks = np.array(self.REFERENCE_LANDMARKS, dtype=np.float64) * scale
landmarks = image_landmarks.get_array() * scale
transform = FaceIdentifier.get_transform(desired_landmarks, landmarks)
img = image.transpose((1, 2, 0))
cv2.warpAffine(img, transform, tuple(scale), img,
flags=cv2.WARP_INVERSE_MAP)
image[:] = img.transpose((2, 0, 1))
示例7: deskew
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return img
#来自opencv的sample,用于svm训练
示例8: transformation_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def transformation_points(src_img, src_points, dst_img, dst_points):
src_points = src_points.astype(np.float64)
dst_points = dst_points.astype(np.float64)
c1 = np.mean(src_points, axis=0)
c2 = np.mean(dst_points, axis=0)
src_points -= c1
dst_points -= c2
s1 = np.std(src_points)
s2 = np.std(dst_points)
src_points /= s1
dst_points /= s2
u, s, vt = np.linalg.svd(src_points.T * dst_points)
r = (u * vt).T
m = np.vstack([np.hstack(((s2 / s1) * r, c2.T - (s2 / s1) * r * c1.T)), np.matrix([0., 0., 1.])])
output = cv2.warpAffine(dst_img, m[:2],
(src_img.shape[1], src_img.shape[0]),
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output
示例9: tran_matrix
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def tran_matrix(src_img, src_points, dst_img, dst_points):
h = cv2.findHomography(dst_points, src_points)
output = cv2.warpAffine(dst_img, h[0][:2], (src_img.shape[1], src_img.shape[0]),
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output
示例10: de_skew
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def de_skew(image, width):
# Grab the width and height of the image and compute moments for the image
(h, w) = image.shape[:2]
moments = cv2.moments(image)
# De-skew the image by applying an affine transformation
skew = moments["mu11"] / moments["mu02"]
matrix = np.float32([[1, skew, -0.5 * w * skew], [0, 1, 0]])
image = cv2.warpAffine(image, matrix, (w, h), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
# Resize the image to have a constant width
image = imutils.resize(image, width=width)
# Return the de-skewed image
return image
示例11: deskew
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return img
示例12: transform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def transform (image):
CAL_VAL = np.loadtxt("calibrated_value.txt")
imheight = np.size(image, 0)
imwidth = np.size(image, 1)
M = getTransform (imwidth, imheight, CAL_VAL[2], CAL_VAL[3], CAL_VAL[4], CAL_VAL[5], CAL_VAL[6], CAL_VAL[7], CAL_VAL[8])
transformed = cv2.warpPerspective(image, M, (imwidth,imheight),cv2.INTER_CUBIC or cv2.WARP_INVERSE_MAP)
return transformed
示例13: detransform
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def detransform(image):
CAL_VAL = np.loadtxt("calibrated_value.txt")
imheight = np.size(image, 0)
imwidth = np.size(image, 1)
M = getTransform (imwidth, imheight, (0-CAL_VAL[2]), (0-CAL_VAL[3]), (0-CAL_VAL[4]), (0-CAL_VAL[5]), (0-CAL_VAL[6]), (1-CAL_VAL[7]), (1-CAL_VAL[8]))
#M = getTransform (imwidth, imheight, 0.0, 0.0, 0.0, 0, 0, 1.0,1.0)
detransformed = cv2.warpPerspective(image, M, (imwidth,imheight),cv2.INTER_CUBIC or cv2.WARP_INVERSE_MAP)
return detransformed
示例14: warp_im
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def warp_im(im, M, dshape):
output_im = numpy.zeros(dshape, dtype=im.dtype)
cv2.warpAffine(
im,
M[:2], (dshape[1], dshape[0]),
dst=output_im,
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output_im
示例15: deskew
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import WARP_INVERSE_MAP [as 别名]
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SIZE*skew], [0, 1, 0]])
img = cv2.warpAffine(img, M, (SIZE, SIZE), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return img