本文整理汇总了Python中cv2.TM_CCORR_NORMED属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.TM_CCORR_NORMED属性的具体用法?Python cv2.TM_CCORR_NORMED怎么用?Python cv2.TM_CCORR_NORMED使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.TM_CCORR_NORMED属性的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: match_dmg_templates
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def match_dmg_templates(self, frame):
match_mat, max_val, tl = [None]*10, [0]*10, [(0, 0)]*10
for i in range(0, 10):
match_mat[i] = cv2.matchTemplate(frame, self.num_img[0],
cv2.TM_CCORR_NORMED, mask=self.num_mask[0])
_, max_val[i], _, tl[i] = cv2.minMaxLoc(match_mat[i])
# print(max_val[0])
br = (tl[0][0] + self.num_w, tl[0][1] + self.num_h)
frame = cv2.rectangle(frame, tl[0], br, (255, 255, 255), 2)
# Multi-template result searching
# _, max_val_1, _, tl_1 = cv2.minMaxLoc(np.array(match_mat))
# print(tl_1)
# A number of methods corresponding to the various trackbars available.
示例2: MatchingMethod
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def MatchingMethod(param):
global match_method
match_method = param
## [copy_source]
img_display = img.copy()
## [copy_source]
## [match_template]
method_accepts_mask = (cv2.TM_SQDIFF == match_method or match_method == cv2.TM_CCORR_NORMED)
if (use_mask and method_accepts_mask):
result = cv2.matchTemplate(img, templ, match_method, None, mask)
else:
result = cv2.matchTemplate(img, templ, match_method)
## [match_template]
## [normalize]
cv2.normalize( result, result, 0, 1, cv2.NORM_MINMAX, -1 )
## [normalize]
## [best_match]
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result, None)
## [best_match]
## [match_loc]
if (match_method == cv2.TM_SQDIFF or match_method == cv2.TM_SQDIFF_NORMED):
matchLoc = minLoc
else:
matchLoc = maxLoc
## [match_loc]
## [imshow]
cv2.rectangle(img_display, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 )
cv2.rectangle(result, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 )
cv2.imshow(image_window, img_display)
cv2.imshow(result_window, result)
## [imshow]
pass
示例3: getRefCoordinate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def getRefCoordinate(self, image, template):
# method = cv2.TM_SQDIFF #2
method = cv2.TM_SQDIFF_NORMED #1
# method = cv2.TM_CCORR_NORMED #3
method = cv2.TM_CCOEFF_NORMED #4
res = cv2.matchTemplate(image, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
# bottom_right = (top_left[0] + w, top_left[1] + h)
return top_left
示例4: get_calibrate_results
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def get_calibrate_results(self, frame):
h, w = self.orig_pct_img.shape[:2]
opt_max_val, opt_top_left, opt_w, opt_h = 0, 0, 0, 0
# Assuming W-360p (640×360), only search the bottom of the frame.
frame = frame[270:, :]
# Iterate over a num. of widths, and rescale the img/mask accordingly.
for new_w in range(self.calib_w_range[0], self.calib_w_range[1]):
new_h = int(new_w * h / w)
pct_img = cv2.resize(self.orig_pct_img, (new_w, new_h))
pct_mask = cv2.resize(self.orig_pct_mask, (new_w, new_h))
# Calculate the confidence and location of the current rescale.
match_mat = cv2.matchTemplate(frame, pct_img,
cv2.TM_CCORR_NORMED, mask=pct_mask)
_, max_val, _, top_left = cv2.minMaxLoc(match_mat)
# Store the results if the confidence is larger than the previous.
if max_val > opt_max_val:
opt_max_val, opt_top_left = max_val, top_left
opt_w, opt_h = new_w, new_h
# Compensate for point location for the ROI that was used.
opt_top_left = (opt_top_left[0], opt_top_left[1] + 270)
# Format the bounding box and return.
bbox = (opt_top_left, (opt_top_left[0]+opt_w, opt_top_left[1]+opt_h))
return bbox, opt_max_val, opt_w, opt_h
# Given a list of expected widths, return the optimal dimensions of the
# template bounding box by calculating the median of the list.
示例5: find_from_targeted
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def find_from_targeted(self, left, right):
# @TODO ignore red target - it is attacked and dead
template = cv2.imread('img/template_target.png', 0)
# print template.shape
roi = get_screen(
self.window_info["x"],
self.window_info["y"],
self.window_info["x"] + self.window_info["width"],
self.window_info["y"] + self.window_info["height"] - 300
)
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
ret, th1 = cv2.threshold(roi, 224, 255, cv2.THRESH_TOZERO_INV)
ret, th2 = cv2.threshold(th1, 135, 255, cv2.THRESH_BINARY)
ret, tp1 = cv2.threshold(template, 224, 255, cv2.THRESH_TOZERO_INV)
ret, tp2 = cv2.threshold(tp1, 135, 255, cv2.THRESH_BINARY)
if not hasattr(th2, 'shape'):
return False
wth, hth = th2.shape
wtp, htp = tp2.shape
if wth > wtp and hth > htp:
res = cv2.matchTemplate(th2, tp2, cv2.TM_CCORR_NORMED)
if res.any():
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
if max_val > 0.7:
return True
else:
return False
return False
示例6: shiftDetection
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def shiftDetection(filePath, imageList, activeImages, area, filterList, thread):
largeDisp = np.zeros((len(imageList),2))
initImage = cv2.imread(filePath+'/'+imageList[0].rstrip(), 0) #read the full image
initImage = filterFunctions.applyFilterListToImage(filterList, initImage)
nbImages = len(imageList)
currentPercent = 1
activeFileList = []
for image in range(1, nbImages):
if activeImages[image] == 1:
activeFileList.append(image)
template = initImage[area[1]:area[3],area[0]:area[2]] #select the template data
width = area[2]-area[0]
height = area[3]-area[1]
origin = (area[0], area[1])
startTime = time.time()
for i in activeFileList:
newImage = cv2.imread(filePath+'/'+imageList[i].rstrip(),0)
newImage = filterFunctions.applyFilterListToImage(filterList, newImage)
matchArea = cv2.matchTemplate(newImage, template, cv2.TM_CCORR_NORMED)
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(matchArea)
template = newImage[maxLoc[1]:maxLoc[1]+height,maxLoc[0]:maxLoc[0]+width] #the template for the next image is update with the template found on the current picture
largeDisp[i][0] = maxLoc[0]-origin[0] #save the displacement
largeDisp[i][1] = maxLoc[1]-origin[1]
percent = i*100/nbImages
if percent > currentPercent:
thread.signal.threadSignal.emit([percent, i, largeDisp[i][0], largeDisp[i][1]])
currentPercent = percent
totalTime = time.time() - startTime
thread.signal.threadSignal.emit([100, nbImages, largeDisp, totalTime])
#print totalTime
示例7: get_tm_results
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TM_CCORR_NORMED [as 别名]
def get_tm_results(self, frame, num_results, conf_thresh=None):
# Only a specific subregion of the frame is analyzed. If the template
# ROI has been initialized, take that frame subregion. Otherwise, take
# the bottom quarter of the frame assuming a W-360p (640x360) format.
if self.template_roi:
frame = frame[self.template_roi[0][1]:self.template_roi[1][1], :]
else:
frame = frame[270:, :]
# Set the confidence threshold to the default, if none was input.
if conf_thresh is None:
conf_thresh = self.conf_thresh
# Match the template using a normalized cross-correlation method and
# retrieve the confidence and top-left points from the result.
match_mat = cv2.matchTemplate(frame, self.pct_img,
cv2.TM_CCORR_NORMED, mask=self.pct_mask)
conf_list, tl_list = self.get_match_results(
match_mat, num_results, conf_thresh)
# Compensate for point location for the used region of interest.
if self.template_roi:
for i, _ in enumerate(tl_list):
tl_list[i] = (tl_list[i][0],
tl_list[i][1] + self.template_roi[0][1])
else:
for i, _ in enumerate(tl_list):
tl_list[i] = (tl_list[i][0], tl_list[i][1] + 270)
# Create a list of bounding boxes (top-left & bottom-right points),
# using the input template_shape given as (width, height).
bbox_list = list()
h, w = self.pct_img.shape[:2]
for tl in tl_list:
br = (tl[0] + w, tl[1] + h)
bbox_list.append((tl, br))
return conf_list, bbox_list
# Take the result of cv2.matchTemplate, and find the most likely locations
# of a template match. To find multiple locations, the region around a
# successful match is zeroed. Return a list of confidences and locations.