本文整理汇总了Python中cv2.THRESH_BINARY_INV属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.THRESH_BINARY_INV属性的具体用法?Python cv2.THRESH_BINARY_INV怎么用?Python cv2.THRESH_BINARY_INV使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.THRESH_BINARY_INV属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: binary_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def binary_image(self,img):
# 应用5种不同的阈值方法
# ret, th1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
# ret, th2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
# ret, th3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
# ret, th4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
# ret, th5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
# titles = ['Gray', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
# images = [img_gray, th1, th2, th3, th4, th5]
# 使用Matplotlib显示
# for i in range(6):
# plt.subplot(2, 3, i + 1)
# plt.imshow(images[i], 'gray')
# plt.title(titles[i], fontsize=8)
# plt.xticks([]), plt.yticks([]) # 隐藏坐标轴
# plt.show()
# Otsu阈值
_, th = cv2.threshold(img, 0, 255, cv2.THRESH_TOZERO + cv2.THRESH_OTSU)
cv2.imshow('Binary image', th)
return th
# 边缘检测
示例2: compute_error
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def compute_error(flow, gt_flow, invalid_mask):
mag_flow = cv2.sqrt(gt_flow[:, :, 0] * gt_flow[:, :, 0] + gt_flow[:, :, 1] * gt_flow[:, :, 1])
ret, mask_to_large = cv2.threshold(src=mag_flow, thresh=900, maxval=1, type=cv2.THRESH_BINARY_INV)
total_inp_mask = invalid_mask[:, :, 0] + invalid_mask[:, :, 1] + invalid_mask[:, :, 2]
ret, fg_mask = cv2.threshold(src=invalid_mask[:, :, 1], thresh=0.5, maxval=1,
type=cv2.THRESH_BINARY)
ret, total_mask = cv2.threshold(src=total_inp_mask, thresh=0.5, maxval=1,
type=cv2.THRESH_BINARY)
#mask_to_large = np.ones(fg_mask.shape)
bg_mask = total_mask - fg_mask
ee_base = computeEE(flow, gt_flow)
result = dict()
result["FG"] = computer_errors(ee_base, fg_mask * mask_to_large)
result["BG"] = computer_errors(ee_base, bg_mask * mask_to_large)
result["Total"] = computer_errors(ee_base, total_mask * mask_to_large)
return result
示例3: prepare
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def prepare(input):
# preprocessing the image input
clean = cv2.fastNlMeansDenoising(input)
ret, tresh = cv2.threshold(clean, 127, 1, cv2.THRESH_BINARY_INV)
img = crop(tresh)
# 40x10 image as a flatten array
flatten_img = cv2.resize(img, (40, 10), interpolation=cv2.INTER_AREA).flatten()
# resize to 400x100
resized = cv2.resize(img, (400, 100), interpolation=cv2.INTER_AREA)
columns = np.sum(resized, axis=0) # sum of all columns
lines = np.sum(resized, axis=1) # sum of all lines
h, w = img.shape
aspect = w / h
return [*flatten_img, *columns, *lines, aspect]
示例4: DeleteNotArea
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def DeleteNotArea(self, in_img):
input_gray = cv2.cvtColor(in_img, cv2.COLOR_BGR2GRAY)
w = in_img.shape[1]
h = in_img.shape[0]
tmp_mat = in_img[int(h * 0.1):int(h * 0.85), int(w * 0.15):int(w * 0.85)]
plateType = getPlateType(tmp_mat, True)
if plateType == 'BLUE':
tmp = in_img[int(h * 0.1):int(h * 0.85), int(w * 0.15):int(w * 0.85)]
threadHoldV = ThresholdOtsu(tmp)
_, img_threshold = cv2.threshold(input_gray, threadHoldV, 255, cv2.THRESH_BINARY)
elif plateType == 'YELLOW':
tmp = in_img[int(h * 0.1):int(h * 0.85), int(w * 0.15):int(w * 0.85)]
threadHoldV = ThresholdOtsu(tmp)
_, img_threshold = cv2.threshold(input_gray, threadHoldV, 255, cv2.THRESH_BINARY_INV)
else:
_, img_threshold = cv2.threshold(input_gray, 10, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
top, bottom = clearLiuDing(img_threshold, 0, img_threshold.shape[0] - 1)
posLeft, posRight, flag = bFindLeftRightBound1(img_threshold)
if flag:
in_img = in_img[int(top):int(bottom), int(posLeft):int(w)]
示例5: compare_ssim_debug
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def compare_ssim_debug(image_a, image_b, color=(255, 0, 0)):
"""
Args:
image_a, image_b: opencv image or PIL.Image
color: (r, g, b) eg: (255, 0, 0) for red
Refs:
https://www.pyimagesearch.com/2017/06/19/image-difference-with-opencv-and-python/
"""
ima, imb = conv2cv(image_a), conv2cv(image_b)
score, diff = compare_ssim(ima, imb, full=True)
diff = (diff * 255).astype('uint8')
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cv2color = tuple(reversed(color))
im = ima.copy()
for c in cnts:
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(im, (x, y), (x+w, y+h), cv2color, 2)
# todo: show image
cv2pil(im).show()
return im
示例6: find_marker_ellipses
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def find_marker_ellipses(im):
im_gray = cvtColor(im, COLOR_BGR2GRAY)
im_blur = GaussianBlur(im_gray, (3, 3), 0)
ret, th = threshold(im_blur, 0, 255, THRESH_BINARY_INV + THRESH_OTSU)
imgEdge, contours, hierarchy = findContours(th, RETR_TREE, CHAIN_APPROX_NONE)
points = []
origins = []
ellipses = []
id_point_candidates = []
small_point_candidates = []
for cnt in contours:
if contour_sanity_check(cnt, im.shape[0], point_d=0.02):
id_point_candidates.append(cnt)
elif contour_sanity_check(cnt, im.shape[0], point_d=0.01):
small_point_candidates.append(cnt)
for cnt in id_point_candidates:
x, y, w, h = boundingRect(cnt)
ellipse = fitEllipse(cnt)
points.append(im_gray[y:y + h, x:x + w])
origins.append((x, y))
ellipses.append(ellipse)
return points, origins, ellipses
示例7: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def main():
threshold = 0
max_value = 255
image = cv2.imread("../data/7.1.08.tiff", 0)
# when applying OTSU threshold, set threshold to 0.
_, output1 = cv2.threshold(image, threshold, max_value, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
_, output2 = cv2.threshold(image, threshold, max_value, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
_, output3 = cv2.threshold(image, threshold, max_value, cv2.THRESH_TOZERO + cv2.THRESH_OTSU)
_, output4 = cv2.threshold(image, threshold, max_value, cv2.THRESH_TOZERO_INV + cv2.THRESH_OTSU)
_, output5 = cv2.threshold(image, threshold, max_value, cv2.THRESH_TRUNC + cv2.THRESH_OTSU)
images = [image, output1, output2, output3, output4, output5]
titles = ["Orignals", "Binary", "Binary Inverse", "TOZERO", "TOZERO INV", "TRUNC"]
for i in range(6):
plt.subplot(3, 2, i + 1)
plt.imshow(images[i], cmap='gray')
plt.title(titles[i])
plt.show()
示例8: clean
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def clean(img):
"""Process an image"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(__, img_bw) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
ctrs, __ = cv2.findContours(img_bw.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# take largest contour
ctr = sorted(ctrs, key=lambda ctr: (cv2.boundingRect(ctr)[2] * cv2.boundingRect(ctr)[3]),
reverse=True)[0]
# Get bounding box
x, y, w, h = cv2.boundingRect(ctr)
# Getting ROI
roi = img_bw[y:y + h, x:x + w]
return skeletize(crop(roi, IMAGE_SIZE))
示例9: _do_ncs_infer
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def _do_ncs_infer(self, operand, img_label=None):
"""Detect and classify digits. If you provide an img_label the cropped digit image will be written to file."""
# Get a list of rectangles for objects detected in this operand's box
op_img = self._canvas[operand.top: operand.bottom, operand.left: operand.right]
gray_img = cv2.cvtColor(op_img, cv2.COLOR_BGR2GRAY)
_, binary_img = cv2.threshold(gray_img, 127, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(binary_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
digits = [cv2.boundingRect(contour) for contour in contours]
if len(digits) > 0:
x, y, w, h = digits[0]
digit_img = self._canvas[operand.top + y: operand.top + y + h,
operand.left + x: operand.left + x + w]
# Write the cropped image to file if a label was provided
if img_label:
cv2.imwrite(img_label + ".png", digit_img)
# Classify the digit and return the most probable result
value, probability = self._net_processor.do_async_inference(digit_img)[0]
print("value: " + str(value) + " probability: " + str(probability))
return value, probability
else:
return None, None
示例10: extract_color
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def extract_color( src, h_th_low, h_th_up, s_th, v_th ):
hsv = cv2.cvtColor(src, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if h_th_low > h_th_up:
ret, h_dst_1 = cv2.threshold(h, h_th_low, 255, cv2.THRESH_BINARY)
ret, h_dst_2 = cv2.threshold(h, h_th_up, 255, cv2.THRESH_BINARY_INV)
dst = cv2.bitwise_or(h_dst_1, h_dst_2)
else:
ret, dst = cv2.threshold(h, h_th_low, 255, cv2.THRESH_TOZERO)
ret, dst = cv2.threshold(dst, h_th_up, 255, cv2.THRESH_TOZERO_INV)
ret, dst = cv2.threshold(dst, 0, 255, cv2.THRESH_BINARY)
ret, s_dst = cv2.threshold(s, s_th, 255, cv2.THRESH_BINARY)
ret, v_dst = cv2.threshold(v, v_th, 255, cv2.THRESH_BINARY)
dst = cv2.bitwise_and(dst, s_dst)
dst = cv2.bitwise_and(dst, v_dst)
return dst
示例11: sketch_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def sketch_image(img):
"""Sketches the image applying a laplacian operator to detect the edges"""
# Convert to gray scale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply median filter
img_gray = cv2.medianBlur(img_gray, 5)
# Detect edges using cv2.Laplacian()
edges = cv2.Laplacian(img_gray, cv2.CV_8U, ksize=5)
# Threshold the edges image:
ret, thresholded = cv2.threshold(edges, 70, 255, cv2.THRESH_BINARY_INV)
return thresholded
示例12: processFile
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def processFile(self, img, debug=False):
"""
Converts input image to grayscale & applies adaptive thresholding.
"""
img = cv2.GaussianBlur(img,(5,5),0)
# Convert to HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# HSV Thresholding
res,hsvThresh = cv2.threshold(hsv[:,:,0], 25, 250, cv2.THRESH_BINARY_INV)
# Show adaptively thresholded image
adaptiveThresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
# Show both thresholded images
# cv2.imshow("HSV Thresholded",hsvThresh)
if debug:
cv2.imshow("Adaptive Thresholding", adaptiveThresh)
return img, adaptiveThresh
示例13: run_vercode_boxdetect
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def run_vercode_boxdetect(ver_img, chineseimg_path):
ver_img = ver_img.replace('\\', '/')
image = cv2.imread(ver_img, cv2.IMREAD_GRAYSCALE)
ret, image1 = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV)
box = FindImageBBox(image1)
imagename = ver_img.split('/')[-1].split('.')[0]
box_index = 0
vercode_box_info = []
cls_vercode_box_info=[]
bbox = np.array([0,0,0,0])
for starx,endx in box:
box_index = box_index +1
region = image[0:40,starx:endx]
out_path = chineseimg_path+ imagename +'_'+str(box_index) + '.jpg'
cv2.imwrite(out_path, region)
vercode_box_info.append([out_path,bbox])
cls_vercode_box_info.append(vercode_box_info)
return cls_vercode_box_info
示例14: process_data
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def process_data():
all_data = []
img_size = 256
contour_path= os.path.join(c.data_manual, 'manual_contours_ch4', 'contours')
image_path = os.path.join(c.data_manual, 'manual_contours_ch4', 'images')
for fn in [f for f in os.listdir(contour_path) if 'jpg' in f]:
if not os.path.exists(os.path.join(image_path, fn)):
continue
img = cv2.imread(os.path.join(image_path, fn), 0)
img = cv2.resize(img, (img_size,img_size)).reshape(1,1,img_size,img_size)
label = cv2.imread(os.path.join(contour_path, fn), 0)
label = cv2.resize(label, (img_size,img_size))
_,label = cv2.threshold(label, 127,255,cv2.THRESH_BINARY_INV)
label = label.reshape(1,1,img_size,img_size)/255
all_data.append([img,label])
np.random.shuffle(all_data)
all_imgs = np.concatenate([a[0] for a in all_data], axis=0)
all_labels = np.concatenate([a[1] for a in all_data], axis=0)
n = all_imgs.shape[0]
destpath = os.path.join(c.data_intermediate, 'ch4_{}.hdf5'.format(img_size))
if os.path.exists(destpath):
os.remove(destpath)
u.save_hd5py({'images': all_imgs, 'labels': all_labels}, destpath, 5)
示例15: hasTable
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import THRESH_BINARY_INV [as 别名]
def hasTable(filename, min_fract_area=.2, min_cells=150):
img = cv2.imread(filename, flags=cv2.IMREAD_COLOR)
if img is None:
raise ValueError("File {0} does not exist".format(filename))
imgGrey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgThresh = cv2.threshold(imgGrey, 150, 255, cv2.THRESH_BINARY_INV)[1]
imgThreshInv = cv2.threshold(imgGrey, 150, 255, cv2.THRESH_BINARY)[1]
imgDil = cv2.dilate(imgThresh, np.ones((5, 5), np.uint8))
imgEro = cv2.erode(imgDil, np.ones((4, 4), np.uint8))
contour_analyzer = TableRecognition.ContourAnalyzer(imgDil)
# 1st pass (black in algorithm diagram)
contour_analyzer.filter_contours(min_area=400)
contour_analyzer.build_graph()
contour_analyzer.remove_non_table_nodes()
contour_analyzer.compute_contour_bounding_boxes()
contour_analyzer.separate_supernode()
return contour_analyzer.does_page_have_valid_table(min_fract_area, min_cells)