本文整理汇总了Python中cv2.TERM_CRITERIA_MAX_ITER属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.TERM_CRITERIA_MAX_ITER属性的具体用法?Python cv2.TERM_CRITERIA_MAX_ITER怎么用?Python cv2.TERM_CRITERIA_MAX_ITER使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.TERM_CRITERIA_MAX_ITER属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _detect_team_color
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def _detect_team_color(self, pixels):
criteria = \
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
pixels = np.array(pixels.reshape((-1, 3)), dtype=np.float32)
ret, label, center = cv2.kmeans(
pixels, 2, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# one is black, another is the team color.
colors = np.array(center, dtype=np.uint8).reshape((1, 2, 3))
colors_hsv = cv2.cvtColor(colors, cv2.COLOR_BGR2HSV)
x = np.argmax(colors_hsv[:, :, 2])
team_color_bgr = colors[0, x, :]
team_color_hsv = colors_hsv[0, x, :]
return {
'rgb': cv2.cvtColor(colors, cv2.COLOR_BGR2RGB).tolist()[0][x],
'hsv': cv2.cvtColor(colors, cv2.COLOR_BGR2HSV).tolist()[0][x],
}
示例2: calculateCorners
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def calculateCorners(self, gray, points=None):
'''
gray is OpenCV gray image,
points is Marker.points
>>> marker.calculateCorners(gray)
>>> print(marker.corners)
'''
if points is None: points = self.points
if points is None: raise TypeError('calculateCorners need a points value')
'''
rotations = 0 -> 0,1,2,3
rotations = 1 -> 3,0,1,2
rotations = 2 -> 2,3,0,1
rotations = 3 -> 1,2,3,0
=> A: 1,0,3,2; B: 0,3,2,1; C: 2,1,0,3; D: 3,2,1,0
'''
i = self.rotations
A = (1,0,3,2)[i]; B = (0,3,2,1)[i]; C = (2,1,0,3)[i]; D = (3,2,1,0)[i]
corners = np.float32([points[A], points[B], points[C], points[D]])
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
self.corners = cv2.cornerSubPix(gray, corners, (5,5), (-1,-1), criteria)
示例3: get_vectors
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def get_vectors(image, points, mtx, dist):
# order points
points = _order_points(points)
# set up criteria, image, points and axis
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
imgp = np.array(points, dtype='float32')
objp = np.array([[0.,0.,0.],[1.,0.,0.],
[1.,1.,0.],[0.,1.,0.]], dtype='float32')
# calculate rotation and translation vectors
cv2.cornerSubPix(gray,imgp,(11,11),(-1,-1),criteria)
rvecs, tvecs, _ = cv2.solvePnPRansac(objp, imgp, mtx, dist)
return rvecs, tvecs
示例4: color_quantization
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def color_quantization(image, k):
"""Performs color quantization using K-means clustering algorithm"""
# Transform image into 'data':
data = np.float32(image).reshape((-1, 3))
# print(data.shape)
# Define the algorithm termination criteria (the maximum number of iterations and/or the desired accuracy):
# In this case the maximum number of iterations is set to 20 and epsilon = 1.0
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 1.0)
# Apply K-means clustering algorithm:
ret, label, center = cv2.kmeans(data, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# At this point we can make the image with k colors
# Convert center to uint8:
center = np.uint8(center)
# Replace pixel values with their center value:
result = center[label.flatten()]
result = result.reshape(img.shape)
return result
# Create the dimensions of the figure and set title:
开发者ID:PacktPublishing,项目名称:Mastering-OpenCV-4-with-Python,代码行数:26,代码来源:k_means_color_quantization.py
示例5: kmeans
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def kmeans(samples, k, criteria = None, attempts = 3, flags = None):
import cv2
if flags == None:
flags = cv2.KMEANS_RANDOM_CENTERS
if criteria == None:
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
samples = np.asarray(samples, dtype = np.float32)
_,labels,centers = cv2.kmeans(samples, k, criteria, attempts, flags)
labels = util.np.flatten(labels)
clusters = [None]*k
for idx, label in enumerate(labels):
if clusters[label] is None:
clusters[label] = []
clusters[label].append(idx)
for idx, cluster in enumerate(clusters):
if cluster == None:
logging.warn('Empty cluster appeared.')
clusters[idx] = []
return labels, clusters, centers
示例6: live_calibrate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def live_calibrate(camera, pattern_shape, n_matches_needed):
""" Find calibration parameters as the user moves a checkerboard in front of the camera """
print("Looking for %s checkerboard" % (pattern_shape,))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
example_3d = np.zeros((pattern_shape[0] * pattern_shape[1], 3), np.float32)
example_3d[:, :2] = np.mgrid[0 : pattern_shape[1], 0 : pattern_shape[0]].T.reshape(-1, 2)
points_3d = []
points_2d = []
while len(points_3d) < n_matches_needed:
ret, frame = camera.cap.read()
assert ret
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findCirclesGrid(
gray_frame, pattern_shape, flags=cv2.CALIB_CB_ASYMMETRIC_GRID
)
cv2.imshow("camera", frame)
if ret:
points_3d.append(example_3d.copy())
points_2d.append(corners)
print("Found calibration %i of %i" % (len(points_3d), n_matches_needed))
drawn_frame = cv2.drawChessboardCorners(frame, pattern_shape, corners, ret)
cv2.imshow("calib", drawn_frame)
cv2.waitKey(10)
ret, camera_matrix, distortion_coefficients, _, _ = cv2.calibrateCamera(
points_3d, points_2d, gray_frame.shape[::-1], None, None
)
assert ret
return camera_matrix, distortion_coefficients
示例7: kmeans
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def kmeans(vs, ks, niter):
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
niter, 0.01)
flags = cv2.KMEANS_RANDOM_CENTERS
compactness, labels, centers = cv2.kmeans(
vs, ks, criteria, 1, flags)
return centers
示例8: get_dominant_color
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def get_dominant_color(pixels, clusters, attempts):
"""
Given a (N, Channels) array of pixel values, compute the dominant color via K-means
"""
clusters = min(clusters, len(pixels))
flags = cv2.KMEANS_RANDOM_CENTERS
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 1, 10)
_, labels, centroids = cv2.kmeans(pixels.astype(np.float32), clusters, None, criteria, attempts, flags)
_, counts = np.unique(labels, return_counts=True)
dominant = centroids[np.argmax(counts)]
return dominant
示例9: kmeans
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def kmeans(array: np.ndarray, k: int = 3):
n_channels = 3 if len(np.shape(array)) == 3 else 1
arr_values = array.reshape((-1, n_channels))
arr_values = np.float32(arr_values)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
_, labels, (centers) = cv2.kmeans(arr_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
centers = np.uint8(centers)
clustered_arr = centers[labels.flatten()]
clustered_arr = clustered_arr.reshape(array.shape)
return clustered_arr
示例10: color_quantization
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def color_quantization(img, n_cluster, iteration, epsilon=1.0):
Z = img.reshape((-1, 3))
Z = np.float32(Z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, iteration, epsilon)
ret, label, center = cv2.kmeans(Z, n_cluster, None, criteria, iteration, cv2.KMEANS_PP_CENTERS)
labels = label.reshape((img.shape[0], img.shape[1], 1))
# center = np.uint(center)
# visual = center[label.flatten()]
# visual = visual.reshape(img.shape)
# visual = np.uint8(visual)
return labels
示例11: test_kmeans
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def test_kmeans(img):
## K均值聚类
z = img.reshape((-1, 3))
z = np.float32(z)
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
ret, label, center = cv2.kmeans(z, 20, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))
cv2.imshow('preview', res2)
cv2.waitKey()
示例12: _get_corners
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def _get_corners(self, image):
"""Find subpixel chessboard corners in image."""
temp = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(temp,
(self.rows, self.columns))
if not ret:
raise ChessboardNotFoundError("No chessboard could be found.")
cv2.cornerSubPix(temp, corners, (11, 11), (-1, -1),
(cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
30, 0.01))
return corners
示例13: svm_init
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def svm_init(C=12.5, gamma=0.50625):
"""Creates empty model and assigns main parameters"""
model = cv2.ml.SVM_create()
model.setGamma(gamma)
model.setC(C)
model.setKernel(cv2.ml.SVM_RBF)
model.setType(cv2.ml.SVM_C_SVC)
model.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6))
return model
开发者ID:PacktPublishing,项目名称:Mastering-OpenCV-4-with-Python,代码行数:13,代码来源:svm_handwritten_digits_recognition_preprocessing_hog_c_gamma.py
示例14: svm_init
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def svm_init(C=12.5, gamma=0.50625):
"""Creates empty model and assigns main parameters"""
model = cv2.ml.SVM_create()
model.setGamma(gamma)
model.setC(C)
model.setKernel(cv2.ml.SVM_LINEAR)
model.setType(cv2.ml.SVM_C_SVC)
model.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6))
return model
示例15: k_means
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import TERM_CRITERIA_MAX_ITER [as 别名]
def k_means(points: np.ndarray):
"""返回一个数组经kmeans分类后的k值以及标签,k值由计算拐点给出
Args:
points (np.ndarray): 需分类数据
Returns:
Tuple[int, np.ndarry]: k值以及标签数组
"""
# Define criteria = ( type, max_iter = 10 , epsilon = 1.0 )
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
# Set flags (Just to avoid line break in the code)
flags = cv2.KMEANS_RANDOM_CENTERS
length = []
max_k = min(10, points.shape[0])
for k in range(2, max_k + 1):
avg = 0
for i in range(5):
compactness, _, _ = cv2.kmeans(
points, k, None, criteria, 10, flags)
avg += compactness
avg /= 5
length.append(avg)
peek_pos = find_peek(length)
k = peek_pos + 2
# print(k)
return k, cv2.kmeans(points, k, None, criteria, 10, flags)[1] # labels