当前位置: 首页>>代码示例>>Python>>正文


Python cv2.SURF属性代码示例

本文整理汇总了Python中cv2.SURF属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.SURF属性的具体用法?Python cv2.SURF怎么用?Python cv2.SURF使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在cv2的用法示例。


在下文中一共展示了cv2.SURF属性的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: init_detector

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import SURF [as 别名]
def init_detector(self):
        """Init keypoint detector object."""
        # BRIEF is a feature descriptor, recommand CenSurE as a fast detector:
        if check_cv_version_is_new():
            # OpenCV3/4, surf is in contrib module, you need to compile it seperately.
            try:
                self.detector = cv2.xfeatures2d.SURF_create(self.HESSIAN_THRESHOLD, upright=self.UPRIGHT)
            except:
                import traceback
                traceback.print_exc()
                raise NoModuleError("There is no %s module in your OpenCV environment, need contribmodule!" % self.METHOD_NAME)
        else:
            # OpenCV2.x
            self.detector = cv2.SURF(self.HESSIAN_THRESHOLD, upright=self.UPRIGHT)

        # # create FlnnMatcher object:
        self.matcher = cv2.FlannBasedMatcher({'algorithm': self.FLANN_INDEX_KDTREE, 'trees': 5}, dict(checks=50)) 
开发者ID:AirtestProject,项目名称:Airtest,代码行数:19,代码来源:keypoint_matching_contrib.py

示例2: init_feature

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import SURF [as 别名]
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
开发者ID:NetEase,项目名称:airtest,代码行数:27,代码来源:findobj.py

示例3: init_feature

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import SURF [as 别名]
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(400)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
开发者ID:UASLab,项目名称:ImageAnalysis,代码行数:27,代码来源:find_obj.py

示例4: __init__

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import SURF [as 别名]
def __init__(self, action_space, feature_type=None, filter_features=None,
                 max_time_steps=100, distance_threshold=4.0, **kwargs):
        """
        filter_features indicates whether to filter out key points that are not
        on the object in the current image. Key points in the target image are
        always filtered out.
        """
        SimpleQuadPanda3dEnv.__init__(self, action_space, **kwargs)
        ServoingEnv.__init__(self, env=self, max_time_steps=max_time_steps, distance_threshold=distance_threshold)

        lens = self.camera_node.node().getLens()
        self._observation_space.spaces['points'] = BoxSpace(np.array([-np.inf, lens.getNear(), -np.inf]),
                                                            np.array([np.inf, lens.getFar(), np.inf]))
        film_size = tuple(int(s) for s in lens.getFilmSize())
        self.mask_camera_sensor = Panda3dMaskCameraSensor(self.app, (self.skybox_node, self.city_node),
                                                          size=film_size,
                                                          near_far=(lens.getNear(), lens.getFar()),
                                                          hfov=lens.getFov())
        for cam in self.mask_camera_sensor.cam:
            cam.reparentTo(self.camera_sensor.cam)

        self.filter_features = True if filter_features is None else False
        self._feature_type = feature_type or 'sift'
        if cv2.__version__.split('.')[0] == '3':
            from cv2.xfeatures2d import SIFT_create, SURF_create
            from cv2 import ORB_create
            if self.feature_type == 'orb':
                # https://github.com/opencv/opencv/issues/6081
                cv2.ocl.setUseOpenCL(False)
        else:
            SIFT_create = cv2.SIFT
            SURF_create = cv2.SURF
            ORB_create = cv2.ORB
        if self.feature_type == 'sift':
            self._feature_extractor = SIFT_create()
        elif self.feature_type == 'surf':
            self._feature_extractor = SURF_create()
        elif self.feature_type == 'orb':
            self._feature_extractor = ORB_create()
        else:
            raise ValueError("Unknown feature extractor %s" % self.feature_type)
        if self.feature_type == 'orb':
            self._matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
        else:
            self._matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
        self._target_key_points = None
        self._target_descriptors = None 
开发者ID:alexlee-gk,项目名称:citysim3d,代码行数:49,代码来源:servoing_designed_features_quad_panda3d_env.py

示例5: main

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import SURF [as 别名]
def main():
    opencv_haystack =cv2.imread('adam.jpg')
    opencv_needle = cv2.imread('adam_rightnostril.jpg')
    ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
    hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)
    import pdb
    pdb.set_trace()
    # build feature detector and descriptor extractor
    hessian_threshold = 175
    detector = cv2.SURF(hessian_threshold)
    (hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
    (nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)

    # extract vectors of size 64 from raw descriptors numpy arrays
    rowsize = len(hdescriptors) / len(hkeypoints)
    if rowsize > 1:
        hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        print "haystack rows shape", hrows.shape
        print "needle rows shape", nrows.shape
    else:
        print '*****************************************************8888'
        hrows = numpy.array(hdescriptors, dtype = numpy.float32)
        nrows = numpy.array(ndescriptors, dtype = numpy.float32)
        rowsize = len(hrows[0])

    # kNN training - learn mapping from hrow to hkeypoints index
    samples = hrows
    responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
    print "sample length", len(samples), "response length", len(responses)
    knn = cv2.KNearest()
    knn.train(samples,responses)

    # retrieve index and value through enumeration
    for i, descriptor in enumerate(nrows):
        descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
        print i, 'descriptor shape', descriptor.shape, 'sample shape', samples[0].shape
        retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
        res, dist =  int(results[0][0]), dists[0][0]
        print 'result', res, 'distance', dist

        if dist < 0.1:
            # draw matched keypoints in red color
            color = (0, 0, 255)
        else:
            # draw unmatched in blue color
            color = (255, 0, 0)
        # draw matched key points on haystack image
        x,y = hkeypoints[res].pt
        center = (int(x),int(y))
        cv2.circle(opencv_haystack,center,2,color,-1)
        # draw matched key points on needle image
        x,y = nkeypoints[i].pt
        center = (int(x),int(y))
        cv2.circle(opencv_needle,center,2,color,-1)

    cv2.imshow('haystack',opencv_haystack)
    cv2.imshow('needle',opencv_needle)
    cv2.waitKey(0)
    cv2.destroyAllWindows() 
开发者ID:LukeAllen,项目名称:optimeyes,代码行数:62,代码来源:adam_descriptors.py


注:本文中的cv2.SURF属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。