本文整理汇总了Python中cv2.NORM_L1属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.NORM_L1属性的具体用法?Python cv2.NORM_L1怎么用?Python cv2.NORM_L1使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.NORM_L1属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: init_detector
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import NORM_L1 [as 别名]
def init_detector(self):
"""Init keypoint detector object."""
# BRIEF is a feature descriptor, recommand CenSurE as a fast detector:
if check_cv_version_is_new():
# OpenCV3/4, star/brief is in contrib module, you need to compile it seperately.
try:
self.star_detector = cv2.xfeatures2d.StarDetector_create()
self.brief_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create()
except:
import traceback
traceback.print_exc()
print("to use %s, you should build contrib with opencv3.0" % self.METHOD_NAME)
raise NoModuleError("There is no %s module in your OpenCV environment !" % self.METHOD_NAME)
else:
# OpenCV2.x
self.star_detector = cv2.FeatureDetector_create("STAR")
self.brief_extractor = cv2.DescriptorExtractor_create("BRIEF")
# create BFMatcher object:
self.matcher = cv2.BFMatcher(cv2.NORM_L1) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
示例2: is_picture
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import NORM_L1 [as 别名]
def is_picture(self):
sampling_interval = int(math.floor(self.scene_length / 5))
sampling_frames = list(range(self.start_frame_no + sampling_interval,
self.end_frame_no - sampling_interval + 1, sampling_interval))
frames = []
for frame_no in sampling_frames:
self.video.set(cv2.CAP_PROP_POS_FRAMES, frame_no)
ret, frame = self.video.read()
frames.append(frame)
diff = 0
n_diff = 0
for frame, next_frame in zip(frames, frames[1:]):
diff += cv2.norm(frame, next_frame, cv2.NORM_L1) # abs diff
n_diff += 1
diff /= n_diff
self.debugging_info[4] = round(diff, 0)
return diff < 3000000
示例3: get_frame
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import NORM_L1 [as 别名]
def get_frame(self,frame_data):
# print(frame_data.size)
frame = np.rec.array(None, dtype=[('value', np.float16),('valid', np.bool_)], shape=(self.height, self.width))
frame.valid.fill(False)
frame.value.fill(0.)
# print(frame.size)
for datum in np.nditer(frame_data, flags=['zerosize_ok']):
# print(datum['y'])
ts_val = datum['ts']
f_data = frame[datum['y'], datum['x']]
f_data.value += 1
img = frame.value/20*255
img = img.astype('uint8')
# img = np.piecewise(img, [img <= 0, (img > 0) & (img < 255), img >= 255], [0, lambda x: x, 255])
# cv2.normalize(img,img,0,255,cv2.NORM_L1)
cv2.normalize(img,img,0,255,cv2.NORM_MINMAX)
img = cv2.flip(img, 1)
img = np.rot90(img)
# cv2.imshow('img_f', img)
# cv2.waitKey(0)
return img
示例4: init_detector
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import NORM_L1 [as 别名]
def init_detector(self):
"""Init keypoint detector object."""
self.detector = cv2.KAZE_create()
# create BFMatcher object:
self.matcher = cv2.BFMatcher(cv2.NORM_L1) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
示例5: init_detector
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import NORM_L1 [as 别名]
def init_detector(self):
"""Init keypoint detector object."""
self.detector = cv2.BRISK_create()
# create BFMatcher object:
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
示例6: get_projection_mat
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import NORM_L1 [as 别名]
def get_projection_mat(self, dx, dy, dz, theta):
print("inside get_projection", dx,dy,dz,theta)
frame = np.rec.array(None, dtype=[('value', np.uint16)], shape=(self.height, self.width))
frame.value.fill(0)
dx = dx*1e-3
dy = dy*1e-3
dz = dz*1e-3
#Project matrix
start = time.time()
k = np.matrix([[dx, dy]])
con_k = np.repeat(k.T, self.old_xy.size/2, axis=1)
c, s = np.cos(theta), np.sin(theta)
R = np.matrix([[c,-s], [s,c]])
new = self.old_xy - np.multiply((self.ts),( con_k + (dz*np.dot(R, self.old_xy))))
end = time.time()
print("Projection time", end-start)
#Converstion of 2D to 1D array
i = np.array(new[0,:] + self.width * new[1,:])
i.astype(int)
u_ele, c_ele = np.unique(i.T,return_counts=True)
u_c = np.asarray((u_ele, c_ele))
print(u_c.shape, self.width, self.height)
start = time.time()
# inputs = range(new.size/2)
# for i in inputs:
# if((new[0,i] >= self.width) or (new[0,i]<0) or (new[1,i] >= self.height) or (new[1,i] < 0)):
# continue
# xy = frame[int(new[1,i]), int(new[0,i])]
# xy.value += 1
inputs = range(u_c.size/2)
for i in inputs:
x = int(u_c[0,i]%self.width)
y = int(u_c[0,i]/self.width)
if((x >= self.width) or (x<0) or (y >= self.height) or (y < 0)):
continue
xy = frame[y,x]
xy.value = u_c[1,i]
end = time.time()
print("For loop time", end-start)
img = frame.value * 10
print(img.max())
# cv2.normalize(img,img,0,255,cv2.NORM_MINMAX)
img = img.astype('uint8')
# cv2.normalize(img,img,0,255,cv2.NORM_L1)
# cv2.imshow('img_p', img)
# cv2.waitKey(0)
return img