本文整理汇总了Python中cv2.MORPH_DILATE属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.MORPH_DILATE属性的具体用法?Python cv2.MORPH_DILATE怎么用?Python cv2.MORPH_DILATE使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.MORPH_DILATE属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: skeletonize
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import MORPH_DILATE [as 别名]
def skeletonize(img):
""" OpenCV function to return a skeletonized version of img, a Mat object"""
# hat tip to http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/
img = img.copy() # don't clobber original
skel = img.copy()
skel[:,:] = 0
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
while True:
eroded = cv2.morphologyEx(img, cv2.MORPH_ERODE, kernel)
temp = cv2.morphologyEx(eroded, cv2.MORPH_DILATE, kernel)
temp = cv2.subtract(img, temp)
skel = cv2.bitwise_or(skel, temp)
img[:,:] = eroded[:,:]
if cv2.countNonZero(img) == 0:
break
return skel
示例2: morphological_transformations
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import MORPH_DILATE [as 别名]
def morphological_transformations(im_thresh, morpho_type="CLOSE", kernel_shape=(5, 5), kernel_type="ELLIPSE"):
"""
Take black & white image and apply morphological transformation
:param im_thresh: Black & White Image
:param morpho_type: CLOSE/OPEN/ERODE/DILATE => See on OpenCV/Google if you do not know these words
:param kernel_shape: tuple corresponding to the size of the kernel
:param kernel_type: RECT/ELLIPSE/CROSS => see on OpenCV
:return: image after processing
"""
if kernel_type == "CROSS":
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, kernel_shape)
elif kernel_type == "RECT":
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernel_shape)
else:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, kernel_shape)
if morpho_type == "OPEN":
morph_type = cv2.MORPH_OPEN
elif morpho_type == "DILATE":
morph_type = cv2.MORPH_DILATE
elif morpho_type == "ERODE":
morph_type = cv2.MORPH_ERODE
else:
morph_type = cv2.MORPH_CLOSE
return cv2.morphologyEx(im_thresh, morph_type, kernel)
# Contours
示例3: trapped_ball_fill_single
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import MORPH_DILATE [as 别名]
def trapped_ball_fill_single(image, seed_point, radius):
"""Perform a single trapped ball fill operation.
# Arguments
image: an image. the image should consist of white background, black lines and black fills.
the white area is unfilled area, and the black area is filled area.
seed_point: seed point for trapped-ball fill, a tuple (integer, integer).
radius: radius of ball shape.
# Returns
an image after filling.
"""
ball = get_ball_structuring_element(radius)
pass1 = np.full(image.shape, 255, np.uint8)
pass2 = np.full(image.shape, 255, np.uint8)
im_inv = cv2.bitwise_not(image)
# Floodfill the image
mask1 = cv2.copyMakeBorder(im_inv, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
_, pass1, _, _ = cv2.floodFill(pass1, mask1, seed_point, 0, 0, 0, 4)
# Perform dilation on image. The fill areas between gaps became disconnected.
pass1 = cv2.morphologyEx(pass1, cv2.MORPH_DILATE, ball, anchor=(-1, -1), iterations=1)
mask2 = cv2.copyMakeBorder(pass1, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
# Floodfill with seed point again to select one fill area.
_, pass2, _, rect = cv2.floodFill(pass2, mask2, seed_point, 0, 0, 0, 4)
# Perform erosion on the fill result leaking-proof fill.
pass2 = cv2.morphologyEx(pass2, cv2.MORPH_ERODE, ball, anchor=(-1, -1), iterations=1)
return pass2
示例4: get_border_point
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import MORPH_DILATE [as 别名]
def get_border_point(points, rect, max_height, max_width):
"""Get border points of a fill area
# Arguments
points: points of fill .
rect: bounding rect of fill.
max_height: image max height.
max_width: image max width.
# Returns
points , convex shape of points
"""
# Get a local bounding rect.
border_rect = get_border_bounding_rect(max_height, max_width, rect[:2], rect[2:], 2)
# Get fill in rect.
fill = np.zeros((border_rect[3] - border_rect[1], border_rect[2] - border_rect[0]), np.uint8)
# Move points to the rect.
fill[(points[0] - border_rect[1], points[1] - border_rect[0])] = 255
# Get shape.
_, contours, _ = cv2.findContours(fill, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
approx_shape = cv2.approxPolyDP(contours[0], 0.02 * cv2.arcLength(contours[0], True), True)
# Get border pixel.
# Structuring element in cross shape is used instead of box to get 4-connected border.
cross = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
border_pixel_mask = cv2.morphologyEx(fill, cv2.MORPH_DILATE, cross, anchor=(-1, -1), iterations=1) - fill
border_pixel_points = np.where(border_pixel_mask == 255)
# Transform points back to fillmap.
border_pixel_points = (border_pixel_points[0] + border_rect[1], border_pixel_points[1] + border_rect[0])
return border_pixel_points, approx_shape
示例5: invisibility
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import MORPH_DILATE [as 别名]
def invisibility(image):
# converting from BGR to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# cv2.imshow("hsv", hsv[..., 0])
# Range for lower red
lower_red = np.array([0, 120, 70])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
# Range for upper range
lower_red = np.array([170, 120, 70])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
# Generating the final mask to detect red color
mask1 = mask1 + mask2
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8))
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE, np.ones((3, 3), np.uint8))
# creating an inverted mask to segment out the cloth from the frame
mask2 = cv2.bitwise_not(mask1)
# Segmenting the cloth out of the frame using bitwise and with the inverted mask
res1 = cv2.bitwise_and(image, image, mask=mask2)
# creating image showing static background frame pixels only for the masked region
res2 = cv2.bitwise_and(background, background, mask=mask1)
# Generating the final output
final_output = cv2.addWeighted(res1, 1, res2, 1, 0)
return final_output
示例6: __extract_grids__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import MORPH_DILATE [as 别名]
def __extract_grids__(img,horizontal):
assert len(img.shape) == 2
# height,width = img.shape
grid_lines = []
if horizontal:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,1))
d_image = cv2.Sobel(img,cv2.CV_16S,0,2)
else:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1,5))
d_image = cv2.Sobel(img,cv2.CV_16S,2,0)
d_image = cv2.convertScaleAbs(d_image)
cv2.normalize(d_image,d_image,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(d_image,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# _,th1 = cv2.threshold(d_image,127,255,cv2.THRESH_BINARY)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernel)
_,contour, hier = cv2.findContours(close.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
perimeter = cv2.arcLength(cnt,True)
if min(h,w) > 1 and (perimeter > 500):
s = cnt.shape
f = np.reshape(cnt,(s[0],s[2]))
if horizontal and (w/h > 5):
grid_lines.append(f)
template = np.zeros(img.shape,np.uint8)
template.fill(255)
cv2.drawContours(template, [cnt], 0, 0, -1)
plt.imshow(template)
plt.show()
elif not horizontal and (h/w > 5):
grid_lines.append(f)
return grid_lines