本文整理汇总了Python中cv2.INPAINT_TELEA属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.INPAINT_TELEA属性的具体用法?Python cv2.INPAINT_TELEA怎么用?Python cv2.INPAINT_TELEA使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.INPAINT_TELEA属性的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: inpaint
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def inpaint(img, threshold=1):
h, w = img.shape[:2]
if len(img.shape) == 3: # RGB
mask = np.all(img == 0, axis=2).astype(np.uint8)
img = cv2.inpaint(img, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
else: # depth
mask = np.where(img > threshold)
xx, yy = np.meshgrid(np.arange(w), np.arange(h))
xym = np.vstack((np.ravel(xx[mask]), np.ravel(yy[mask]))).T
img = np.ravel(img[mask])
interp = interpolate.NearestNDInterpolator(xym, img)
img = interp(np.ravel(xx), np.ravel(yy)).reshape(xx.shape)
return img
示例2: unmeasure_np
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def unmeasure_np(self, hparams, x_measured_val, theta_val):
if hparams.unmeasure_type == 'medfilt':
unmeasure_func = lambda image, mask: signal.medfilt(image)
elif hparams.unmeasure_type == 'inpaint-telea':
inpaint_type = cv2.INPAINT_TELEA
unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type)
elif hparams.unmeasure_type == 'inpaint-ns':
inpaint_type = cv2.INPAINT_NS
unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type)
elif hparams.unmeasure_type == 'inpaint-tv':
unmeasure_func = measure_utils.get_inpaint_func_tv()
elif hparams.unmeasure_type == 'blur':
unmeasure_func = measure_utils.get_blur_func()
else:
raise NotImplementedError
x_unmeasured_val = np.zeros_like(x_measured_val)
for i in range(x_measured_val.shape[0]):
x_unmeasured_val[i] = unmeasure_func(x_measured_val[i], theta_val[i])
return x_unmeasured_val
示例3: remove_watermark_raw
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def remove_watermark_raw(self, img, watermark_template_gray_img, watermark_template_mask_img):
"""
去除图片中的水印
:param img: 待去除水印图片位图
:param watermark_template_gray_img: 水印模板的灰度图片位图,用于确定水印位置
:param watermark_template_mask_img: 水印模板的掩码图片位图,用于修复原始图片
:return: 去除水印后的图片位图
"""
# 寻找水印位置
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
x1, y1, x2, y2 = self.find_watermark_from_gray(img_gray, watermark_template_gray_img)
# 制作原图的水印位置遮板
mask = np.zeros(img.shape, np.uint8)
# watermark_template_mask_img = cv2.cvtColor(watermark_template_gray_img, cv2.COLOR_GRAY2BGR)
# mask[y1:y1 + self.watermark_template_h, x1:x1 + self.watermark_template_w] = watermark_template_mask_img
mask[y1:y2, x1:x2] = watermark_template_mask_img
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# 用遮板进行图片修复,使用 TELEA 算法
dst = cv2.inpaint(img, mask, 5, cv2.INPAINT_TELEA)
# cv2.imwrite('dst.jpg', dst)
return dst
示例4: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def main():
image = cv2.imread("../data/Damaged Image.tiff", 1)
mask_image = cv2.imread("../data/Mask.tiff", 0)
telea_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_TELEA)
ns_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_NS)
cv2.imshow("Orignal Image", image)
cv2.imshow("Mask Image", mask_image)
cv2.imshow("TELEA Restored Image", telea_image)
cv2.imshow("NS Restored Image", ns_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
示例5: GetDepthImageObservation
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def GetDepthImageObservation(self):
# ros image to cv2 image
try:
cv_img = self.bridge.imgmsg_to_cv2(self.depth_image, "32FC1")
except Exception as e:
raise e
# try:
# cv_rgb_img = self.bridge.imgmsg_to_cv2(self.rgb_image, "bgr8")
# except Exception as e:
# raise e
cv_img = np.array(cv_img, dtype=np.float32)
cv_img[np.isnan(cv_img)] = 0.
# cv_img/=(10./255.)
cv_img/=(10000./255.)
# print 'max:', np.amax(cv_img), 'min:', np.amin(cv_img)
# cv_img[cv_img > 5.] = -1.
# cv_img[cv_img < 0.4] = 0.
# inpainting
mask = copy.deepcopy(cv_img)
mask[mask == 0.] = 1.
mask[mask != 1.] = 0.
# print 'mask sum:', np.sum(mask)
mask = np.uint8(mask)
cv_img = cv2.inpaint(np.uint8(cv_img), mask, 3, cv2.INPAINT_TELEA)
cv_img = np.array(cv_img, dtype=np.float32)
# cv_img*=(10./255.)
cv_img*=(10./255.)
# resize
dim = (self.depth_image_size[0], self.depth_image_size[1])
cv_img = cv2.resize(cv_img, dim, interpolation = cv2.INTER_AREA)
# cv2 image to ros image and publish
try:
resized_img = self.bridge.cv2_to_imgmsg(cv_img, "passthrough")
except Exception as e:
raise e
self.resized_depth_img.publish(resized_img)
return(cv_img/5.)
示例6: inpaint
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def inpaint(self, win_size=3, rescale_factor=1.0):
""" Fills in the zero pixels in the image.
Parameters
----------
win_size : int
size of window to use for inpainting
rescale_factor : float
amount to rescale the image for inpainting, smaller numbers increase speed
Returns
-------
:obj:`ColorImage`
color image with zero pixels filled in
"""
# get original shape
orig_shape = (self.height, self.width)
# resize the image
resized_data = self.resize(rescale_factor, interp='nearest').data
# inpaint smaller image
mask = 1 * (np.sum(resized_data, axis=2) == 0)
inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8),
win_size, cv2.INPAINT_TELEA)
inpainted_im = ColorImage(inpainted_data, frame=self.frame)
# fill in zero pixels with inpainted and resized image
filled_data = inpainted_im.resize(
orig_shape, interp='bilinear').data
new_data = self.data
new_data[self.data == 0] = filled_data[self.data == 0]
return ColorImage(new_data, frame=self.frame)
示例7: inpaint
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def inpaint(mask, masked_image):
l = []
for i in range(mask.size(0)):
permuted_image = permute_image(masked_image[i], mul255=True)
m = mask[i].squeeze().byte().numpy()
inpainted_numpy = cv2.inpaint(permuted_image, m, 3, cv2.INPAINT_TELEA) #cv2.INPAINT_NS
l.append(transforms.ToTensor()(inpainted_numpy).unsqueeze(0))
inpainted_tensor = torch.cat(l, 0)
return inpainted_tensor
示例8: poisson_blend
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def poisson_blend(input, output, mask):
"""
* inputs:
- input (torch.Tensor, required)
Input tensor of Completion Network, whose shape = (N, 3, H, W).
- output (torch.Tensor, required)
Output tensor of Completion Network, whose shape = (N, 3, H, W).
- mask (torch.Tensor, required)
Input mask tensor of Completion Network, whose shape = (N, 1, H, W).
* returns:
Output image tensor of shape (N, 3, H, W) inpainted with poisson image editing method.
"""
input = input.clone().cpu()
output = output.clone().cpu()
mask = mask.clone().cpu()
mask = torch.cat((mask, mask, mask), dim=1) # convert to 3-channel format
num_samples = input.shape[0]
ret = []
for i in range(num_samples):
dstimg = transforms.functional.to_pil_image(input[i])
dstimg = np.array(dstimg)[:, :, [2, 1, 0]]
srcimg = transforms.functional.to_pil_image(output[i])
srcimg = np.array(srcimg)[:, :, [2, 1, 0]]
msk = transforms.functional.to_pil_image(mask[i])
msk = np.array(msk)[:, :, [2, 1, 0]]
# compute mask's center
xs, ys = [], []
for j in range(msk.shape[0]):
for k in range(msk.shape[1]):
if msk[j, k, 0] == 255:
ys.append(j)
xs.append(k)
xmin, xmax = min(xs), max(xs)
ymin, ymax = min(ys), max(ys)
center = ((xmax + xmin) // 2, (ymax + ymin) // 2)
dstimg = cv2.inpaint(dstimg, msk[:, :, 0], 1, cv2.INPAINT_TELEA)
out = cv2.seamlessClone(srcimg, dstimg, msk, center, cv2.NORMAL_CLONE)
out = out[:, :, [2, 1, 0]]
out = transforms.functional.to_tensor(out)
out = torch.unsqueeze(out, dim=0)
ret.append(out)
ret = torch.cat(ret, dim=0)
return ret
示例9: GetDepthImageObservation
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import INPAINT_TELEA [as 别名]
def GetDepthImageObservation(self):
# ros image to cv2 image
try:
cv_img = self.bridge.imgmsg_to_cv2(self.depth_image, "32FC1")
except Exception as e:
raise e
try:
cv_rgb_img = self.bridge.imgmsg_to_cv2(self.rgb_image, "bgr8")
except Exception as e:
raise e
cv_img = np.array(cv_img, dtype=np.float32)
# resize
dim = (self.depth_image_size[0], self.depth_image_size[1])
cv_img = cv2.resize(cv_img, dim, interpolation = cv2.INTER_AREA)
cv_img[np.isnan(cv_img)] = 0.
cv_img[cv_img < 0.4] = 0.
cv_img/=(10./255.)
# cv_img/=(10000./255.)
# print 'max:', np.amax(cv_img), 'min:', np.amin(cv_img)
# cv_img[cv_img > 5.] = -1.
# # inpainting
# mask = copy.deepcopy(cv_img)
# mask[mask == 0.] = 1.
# mask[mask != 1.] = 0.
# mask = np.uint8(mask)
# cv_img = cv2.inpaint(np.uint8(cv_img), mask, 3, cv2.INPAINT_TELEA)
# # guassian noise
# gauss = np.random.normal(0., 0.5, dim)
# gauss = gauss.reshape(dim[1], dim[0])
# cv_img = np.array(cv_img, dtype=np.float32)
# cv_img = cv_img + gauss
# cv_img[cv_img<0.00001] = 0.
# # smoothing
# kernel = np.ones((4,4),np.float32)/16
# cv_img = cv2.filter2D(cv_img,-1,kernel)
cv_img = np.array(cv_img, dtype=np.float32)
cv_img*=(10./255.)
# cv2 image to ros image and publish
try:
resized_img = self.bridge.cv2_to_imgmsg(cv_img, "passthrough")
except Exception as e:
raise e
self.resized_depth_img.publish(resized_img)
return(cv_img/5.)