本文整理汇总了Python中cv2.IMREAD_IGNORE_ORIENTATION属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.IMREAD_IGNORE_ORIENTATION属性的具体用法?Python cv2.IMREAD_IGNORE_ORIENTATION怎么用?Python cv2.IMREAD_IGNORE_ORIENTATION使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.IMREAD_IGNORE_ORIENTATION属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_rgb
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def load_rgb(self, equalize=False):
# print("Loading:", self.image_file)
try:
img_rgb = cv2.imread(self.image_file, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION)
if equalize:
# equalize val (essentially gray scale level)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
hsv = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2HSV)
hue, sat, val = cv2.split(hsv)
aeq = clahe.apply(val)
# recombine
hsv = cv2.merge((hue,sat,aeq))
# convert back to rgb
img_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
h, w = img_rgb.shape[:2]
self.node.setInt('height', h)
self.node.setInt('width', w)
return img_rgb
except:
print(self.image_file + ":\n" + " rgb load error: " \
+ str(sys.exc_info()[1]))
return None
示例2: read_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def read_image(self, image_path):
r = open(image_path,'rb').read()
img_array = np.asarray(bytearray(r), dtype=np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
return img
示例3: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.
"""
coco = self.coco
img_id = self.ids[index]
ann_ids = coco.getAnnIds(imgIds=img_id)
target = coco.loadAnns(ann_ids)
file_name = coco.loadImgs(img_id)[0]['file_name']
if self.data_format == 'zip':
img = zipreader.imread(
self._get_image_path(file_name),
cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
)
else:
img = cv2.imread(
self._get_image_path(file_name),
cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
示例4: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def __getitem__(self, idx):
#img, anno = super(COCODataset, self).__getitem__(idx)
# use zipreader, change the function of super.getitem
coco = self.coco
img_id = self.ids[idx]
ann_ids = coco.getAnnIds(imgIds=img_id)
anno = coco.loadAnns(ann_ids)
path = coco.loadImgs(img_id)[0]['file_name']
# In philly cluster use zipreader instead Image.open
#img = Image.open(os.path.join(self.root, path)).convert('RGB')
img = zipreader.imread(os.path.join(self.root, path), \
cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
img = Image.fromarray(img)
# filter crowd annotations
# TODO might be better to add an extra field
anno = [obj for obj in anno if obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")
classes = [obj["category_id"] for obj in anno]
classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
classes = torch.tensor(classes)
target.add_field("labels", classes)
masks = [obj["segmentation"] for obj in anno]
masks = SegmentationMask(masks, img.size)
target.add_field("masks", masks)
target = target.clip_to_image(remove_empty=True)
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target, idx
示例5: get_test_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def get_test_image(roidb, config):
"""
preprocess image and return processed roidb
:param roidb: a list of roidb
:return: list of img as in mxnet format
roidb add new item['im_info']
0 --- x (width, second dim of im)
|
y (height, first dim of im)
"""
num_images = len(roidb)
processed_ims = []
processed_roidb = []
for i in range(num_images):
roi_rec = roidb[i]
assert os.path.exists(roi_rec['image']), '%s does not exist'.format(roi_rec['image'])
im = cv2.imread(roi_rec['image'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
# print (roidb[i])
# if roidb[i]['flipped']:
# im = im[:, ::-1, :]
new_rec = roi_rec.copy()
scale_ind = random.randrange(len(config.SCALES))
# print "config.SCALES[scale_ind]:",config.SCALES[scale_ind]
target_size = config.SCALES[scale_ind][0]
max_size = config.SCALES[scale_ind][1]
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
im_tensor = transform(im, config.network.PIXEL_MEANS)
processed_ims.append(im_tensor)
im_info = [im_tensor.shape[2], im_tensor.shape[3], im_scale]
# new_rec['boxes'] = clip_boxes(np.round(roi_rec['boxes'].copy() * im_scale), im_info[:2])
new_rec['im_info'] = im_info
processed_roidb.append(new_rec)
return processed_ims, processed_roidb
示例6: get_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def get_image(roidb, config):
"""
preprocess image and return processed roidb
:param roidb: a list of roidb
:return: list of img as in mxnet format
roidb add new item['im_info']
0 --- x (width, second dim of im)
|
y (height, first dim of im)
"""
num_images = len(roidb)
processed_ims = []
processed_roidb = []
for i in range(num_images):
roi_rec = roidb[i]
assert os.path.exists(roi_rec['image']), '%s does not exist'.format(roi_rec['image'])
im = cv2.imread(roi_rec['image'], cv2.IMREAD_COLOR|cv2.IMREAD_IGNORE_ORIENTATION)
# print (roidb[i])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
new_rec = roi_rec.copy()
scale_ind = random.randrange(len(config.SCALES))
target_size = config.SCALES[scale_ind][0]
# pdb.set_trace()
max_size = config.SCALES[scale_ind][1]
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
im_tensor = transform(im, config.network.PIXEL_MEANS)
processed_ims.append(im_tensor)
im_info = [im_tensor.shape[2], im_tensor.shape[3], im_scale]
new_rec['boxes'] = clip_boxes(np.round(roi_rec['boxes'].copy() * im_scale), im_info[:2])
new_rec['im_info'] = im_info
processed_roidb.append(new_rec)
return processed_ims, processed_roidb
示例7: pre_process
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def pre_process(image, bboxs, scores, cfg, thred_score=0.8):
if type(image) == str:
data_numpy = cv2.imread(image, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
else:
data_numpy = image
inputs = []
centers = []
scales = []
score_num = np.sum(scores>thred_score)
max_box = min(5, score_num)
for bbox in bboxs[:max_box]:
x1,y1,x2,y2 = bbox
box = [x1, y1, x2-x1, y2-y1]
# 截取 box fron image --> return center, scale
c, s = _box2cs(box, data_numpy.shape[0], data_numpy.shape[1])
centers.append(c)
scales.append(s)
r = 0
trans = get_affine_transform(c, s, r, cfg.MODEL.IMAGE_SIZE)
input = cv2.warpAffine(
data_numpy,
trans,
(int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])),
flags=cv2.INTER_LINEAR)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
input = transform(input).unsqueeze(0)
inputs.append(input)
inputs = torch.cat(inputs)
return inputs, data_numpy, centers, scales
示例8: get_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def get_image(roidb, config):
"""
preprocess image and return processed roidb
:param roidb: a list of roidb
:return: list of img as in mxnet format
roidb add new item['im_info']
0 --- x (width, second dim of im)
|
y (height, first dim of im)
"""
num_images = len(roidb)
processed_ims = []
processed_roidb = []
for i in range(num_images):
roi_rec = roidb[i]
if 'tar' in roi_rec['pattern']:
assert os.path.exists(roi_rec['pattern']), '%s does not exist'.format(roi_rec['pattern'])
im = imread_from_tar(roi_rec['pattern'], roi_rec['image'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
else:
assert os.path.exists(roi_rec['image']), '%s does not exist'.format(roi_rec['image'])
im = cv2.imread(roi_rec['image'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
if roidb[i]['flipped']:
im = im[:, ::-1, :]
new_rec = roi_rec.copy()
scale_ind = random.randrange(len(config.SCALES))
target_size = config.SCALES[scale_ind][0]
max_size = config.SCALES[scale_ind][1]
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
im_tensor = transform(im, config.network.PIXEL_MEANS)
processed_ims.append(im_tensor)
im_info = [im_tensor.shape[2], im_tensor.shape[3], im_scale]
new_rec['boxes'] = clip_boxes(np.round(roi_rec['boxes'].copy() * im_scale), im_info[:2])
new_rec['im_info'] = im_info
processed_roidb.append(new_rec)
return processed_ims, processed_roidb
示例9: make_textures_opencv
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def make_textures_opencv(src_dir, project_dir, image_list, resolution=256):
dst_dir = os.path.join(project_dir, 'models')
if not os.path.exists(dst_dir):
print("Notice: creating texture directory =", dst_dir)
os.makedirs(dst_dir)
for image in image_list:
src = image.image_file
dst = os.path.join(dst_dir, image.name + '.JPG')
if not os.path.exists(dst):
print(src)
src = cv2.imread(src, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION)
height, width = src.shape[:2]
# downscale image first
method = cv2.INTER_AREA # cv2.INTER_AREA
scale = cv2.resize(src, (0,0),
fx=resolution/float(width),
fy=resolution/float(height),
interpolation=method)
# convert to hsv color space
hsv = cv2.cvtColor(scale, cv2.COLOR_BGR2HSV)
hue,sat,val = cv2.split(hsv)
# adaptive histogram equalization on 'value' channel
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
aeq = clahe.apply(val)
# recombine
hsv = cv2.merge((hue,sat,aeq))
# convert back to rgb
result = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
cv2.imwrite(dst, result)
print("Texture %dx%d %s" % (resolution, resolution, dst))
示例10: evaluate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def evaluate(self, preds, result_dir):
print('Evaluation start...')
gts = self.data
sample_num = len(preds)
joint_num = self.original_joint_num
pred_2d_save = {}
pred_3d_save = {}
for n in range(sample_num):
gt = gts[n]
f = gt['f']
c = gt['c']
bbox = gt['bbox']
gt_3d_root = gt['root_cam']
img_name = gt['img_path'].split('/')
img_name = img_name[-2] + '_' + img_name[-1].split('.')[0] # e.g., TS1_img_0001
# restore coordinates to original space
pred_2d_kpt = preds[n].copy()
# only consider eval_joint
pred_2d_kpt = np.take(pred_2d_kpt, self.eval_joint, axis=0)
pred_2d_kpt[:,0] = pred_2d_kpt[:,0] / cfg.output_shape[1] * bbox[2] + bbox[0]
pred_2d_kpt[:,1] = pred_2d_kpt[:,1] / cfg.output_shape[0] * bbox[3] + bbox[1]
pred_2d_kpt[:,2] = (pred_2d_kpt[:,2] / cfg.depth_dim * 2 - 1) * (cfg.bbox_3d_shape[0]/2) + gt_3d_root[2]
# 2d kpt save
if img_name in pred_2d_save:
pred_2d_save[img_name].append(pred_2d_kpt[:,:2])
else:
pred_2d_save[img_name] = [pred_2d_kpt[:,:2]]
vis = False
if vis:
cvimg = cv2.imread(gt['img_path'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
filename = str(random.randrange(1,500))
tmpimg = cvimg.copy().astype(np.uint8)
tmpkps = np.zeros((3,joint_num))
tmpkps[0,:], tmpkps[1,:] = pred_2d_kpt[:,0], pred_2d_kpt[:,1]
tmpkps[2,:] = 1
tmpimg = vis_keypoints(tmpimg, tmpkps, self.skeleton)
cv2.imwrite(filename + '_output.jpg', tmpimg)
# back project to camera coordinate system
pred_3d_kpt = pixel2cam(pred_2d_kpt, f, c)
# 3d kpt save
if img_name in pred_3d_save:
pred_3d_save[img_name].append(pred_3d_kpt)
else:
pred_3d_save[img_name] = [pred_3d_kpt]
output_path = osp.join(result_dir,'preds_2d_kpt_mupots.mat')
sio.savemat(output_path, pred_2d_save)
print("Testing result is saved at " + output_path)
output_path = osp.join(result_dir,'preds_3d_kpt_mupots.mat')
sio.savemat(output_path, pred_3d_save)
print("Testing result is saved at " + output_path)
示例11: evaluate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def evaluate(self, preds, result_dir):
print('Evaluation start...')
gts = self.data
sample_num = len(preds)
joint_num = self.original_joint_num
pred_2d_save = {}
pred_3d_save = {}
for n in range(sample_num):
gt = gts[n]
f = gt['f']
c = gt['c']
bbox = gt['bbox']
gt_3d_root = gt['root_cam']
img_name = gt['img_path'].split('/')
img_name = 'coco_' + img_name[-1].split('.')[0] # e.g., coco_00000000
# restore coordinates to original space
pred_2d_kpt = preds[n].copy()
# only consider eval_joint
pred_2d_kpt = np.take(pred_2d_kpt, self.eval_joint, axis=0)
pred_2d_kpt[:,0] = pred_2d_kpt[:,0] / cfg.output_shape[1] * bbox[2] + bbox[0]
pred_2d_kpt[:,1] = pred_2d_kpt[:,1] / cfg.output_shape[0] * bbox[3] + bbox[1]
pred_2d_kpt[:,2] = (pred_2d_kpt[:,2] / cfg.depth_dim * 2 - 1) * (cfg.bbox_3d_shape[0]/2) + gt_3d_root[2]
# 2d kpt save
if img_name in pred_2d_save:
pred_2d_save[img_name].append(pred_2d_kpt[:,:2])
else:
pred_2d_save[img_name] = [pred_2d_kpt[:,:2]]
vis = False
if vis:
cvimg = cv2.imread(gt['img_path'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
filename = str(random.randrange(1,500))
tmpimg = cvimg.copy().astype(np.uint8)
tmpkps = np.zeros((3,joint_num))
tmpkps[0,:], tmpkps[1,:] = pred_2d_kpt[:,0], pred_2d_kpt[:,1]
tmpkps[2,:] = 1
tmpimg = vis_keypoints(tmpimg, tmpkps, self.skeleton)
cv2.imwrite(filename + '_output.jpg', tmpimg)
# back project to camera coordinate system
pred_3d_kpt = pixel2cam(pred_2d_kpt, f, c)
# 3d kpt save
if img_name in pred_3d_save:
pred_3d_save[img_name].append(pred_3d_kpt)
else:
pred_3d_save[img_name] = [pred_3d_kpt]
output_path = osp.join(result_dir,'preds_2d_kpt_coco.mat')
sio.savemat(output_path, pred_2d_save)
print("Testing result is saved at " + output_path)
output_path = osp.join(result_dir,'preds_3d_kpt_coco.mat')
sio.savemat(output_path, pred_3d_save)
print("Testing result is saved at " + output_path)
示例12: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def main():
# get symbol
pprint.pprint(config)
sym_instance = eval(config.symbol + '.' + config.symbol)()
sym = sym_instance.get_symbol(config, is_train=False)
# load demo data
image_names = ['000240.jpg', '000437.jpg', '004072.jpg', '007912.jpg']
image_all = []
data = []
for im_name in image_names:
assert os.path.exists(cur_path + '/../demo/deform_conv/' + im_name), \
('%s does not exist'.format('../demo/deform_conv/' + im_name))
im = cv2.imread(cur_path + '/../demo/deform_conv/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
image_all.append(im)
target_size = config.SCALES[0][0]
max_size = config.SCALES[0][1]
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
im_tensor = transform(im, config.network.PIXEL_MEANS)
im_info = np.array([[im_tensor.shape[2], im_tensor.shape[3], im_scale]], dtype=np.float32)
data.append({'data': im_tensor, 'im_info': im_info})
# get predictor
data_names = ['data', 'im_info']
label_names = []
data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
provide_label = [None for i in xrange(len(data))]
arg_params, aux_params = load_param(cur_path + '/../model/deform_conv', 0, process=True)
predictor = Predictor(sym, data_names, label_names,
context=[mx.gpu(0)], max_data_shapes=max_data_shape,
provide_data=provide_data, provide_label=provide_label,
arg_params=arg_params, aux_params=aux_params)
# test
for idx, _ in enumerate(image_names):
data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
provide_label=[None])
output = predictor.predict(data_batch)
res5a_offset = output[0]['res5a_branch2b_offset_output'].asnumpy()
res5b_offset = output[0]['res5b_branch2b_offset_output'].asnumpy()
res5c_offset = output[0]['res5c_branch2b_offset_output'].asnumpy()
im = image_all[idx]
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
show_dconv_offset(im, [res5c_offset, res5b_offset, res5a_offset])
示例13: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def main():
# get symbol
pprint.pprint(config)
sym_instance = eval(config.symbol + '.' + config.symbol)()
sym = sym_instance.get_symbol_rfcn(config, is_train=False)
# load demo data
image_names = ['000057.jpg', '000149.jpg', '000351.jpg', '002535.jpg']
image_all = []
# ground truth boxes
gt_boxes_all = [np.array([[132, 52, 384, 357]]), np.array([[113, 1, 350, 360]]),
np.array([[0, 27, 329, 155]]), np.array([[8, 40, 499, 289]])]
gt_classes_all = [np.array([3]), np.array([16]), np.array([7]), np.array([12])]
data = []
for idx, im_name in enumerate(image_names):
assert os.path.exists(cur_path + '/../demo/deform_psroi/' + im_name), \
('%s does not exist'.format('../demo/deform_psroi/' + im_name))
im = cv2.imread(cur_path + '/../demo/deform_psroi/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
image_all.append(im)
target_size = config.SCALES[0][0]
max_size = config.SCALES[0][1]
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
im_tensor = transform(im, config.network.PIXEL_MEANS)
gt_boxes = gt_boxes_all[idx]
gt_boxes = np.round(gt_boxes * im_scale)
data.append({'data': im_tensor, 'rois': np.hstack((np.zeros((gt_boxes.shape[0], 1)), gt_boxes))})
# get predictor
data_names = ['data', 'rois']
label_names = []
data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
provide_label = [None for i in xrange(len(data))]
arg_params, aux_params = load_param(cur_path + '/../model/deform_psroi', 0, process=True)
predictor = Predictor(sym, data_names, label_names,
context=[mx.gpu(0)], max_data_shapes=max_data_shape,
provide_data=provide_data, provide_label=provide_label,
arg_params=arg_params, aux_params=aux_params)
# test
for idx, _ in enumerate(image_names):
data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
provide_label=[None])
output = predictor.predict(data_batch)
cls_offset = output[0]['rfcn_cls_offset_output'].asnumpy()
im = image_all[idx]
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
boxes = gt_boxes_all[idx]
show_dpsroi_offset(im, boxes, cls_offset, gt_classes_all[idx])
示例14: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def __getitem__(self, index):
joints_have_depth = self.joints_have_depth
data = copy.deepcopy(self.db[index])
bbox = data['bbox']
root_img = np.array(data['root_img'])
root_vis = np.array(data['root_vis'])
area = data['area']
f = data['f']
# 1. load image
cvimg = cv2.imread(data['img_path'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
if not isinstance(cvimg, np.ndarray):
raise IOError("Fail to read %s" % data['img_path'])
img_height, img_width, img_channels = cvimg.shape
# 2. get augmentation params
if self.do_augment:
rot, do_flip, color_scale = get_aug_config()
else:
rot, do_flip, color_scale = 0, False, [1.0, 1.0, 1.0]
# 3. crop patch from img and perform data augmentation (flip, rot, color scale)
img_patch, trans = generate_patch_image(cvimg, bbox, do_flip, rot)
for i in range(img_channels):
img_patch[:, :, i] = np.clip(img_patch[:, :, i] * color_scale[i], 0, 255)
# 4. generate patch joint, area_ratio, and ground truth
# flip joints and apply Affine Transform on joints
if do_flip:
root_img[0] = img_width - root_img[0] - 1
root_img[0:2] = trans_point2d(root_img[0:2], trans)
root_vis *= (
(root_img[0] >= 0) & \
(root_img[0] < cfg.input_shape[1]) & \
(root_img[1] >= 0) & \
(root_img[1] < cfg.input_shape[0])
)
# change coordinates to output space
root_img[0] = root_img[0] / cfg.input_shape[1] * cfg.output_shape[1]
root_img[1] = root_img[1] / cfg.input_shape[0] * cfg.output_shape[0]
if self.is_train:
img_patch = self.transform(img_patch)
k_value = np.array([math.sqrt(cfg.bbox_real[0]*cfg.bbox_real[1]*f[0]*f[1]/(area))]).astype(np.float32)
root_img = root_img.astype(np.float32)
root_vis = root_vis.astype(np.float32)
joints_have_depth = np.array([joints_have_depth]).astype(np.float32)
return img_patch, k_value, root_img, root_vis, joints_have_depth
else:
img_patch = self.transform(img_patch)
k_value = np.array([math.sqrt(cfg.bbox_real[0]*cfg.bbox_real[1]*f[0]*f[1]/(area))]).astype(np.float32)
return img_patch, k_value
示例15: __getitem__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import IMREAD_IGNORE_ORIENTATION [as 别名]
def __getitem__(self, idx):
db_rec = copy.deepcopy(self.db[idx])
image_dir = 'images.zip@' if self.data_format == 'zip' else ''
image_file = osp.join(self.root, db_rec['source'], image_dir, 'images',
db_rec['image'])
if self.data_format == 'zip':
from utils import zipreader
data_numpy = zipreader.imread(
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
else:
data_numpy = cv2.imread(
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
joints = db_rec['joints_2d'].copy()
joints_vis = db_rec['joints_vis'].copy()
center = np.array(db_rec['center']).copy()
scale = np.array(db_rec['scale']).copy()
rotation = 0
if self.is_train:
sf = self.scale_factor
rf = self.rotation_factor
scale = scale * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
rotation = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) \
if random.random() <= 0.6 else 0
trans = get_affine_transform(center, scale, rotation, self.image_size)
input = cv2.warpAffine(
data_numpy,
trans, (int(self.image_size[0]), int(self.image_size[1])),
flags=cv2.INTER_LINEAR)
if self.transform:
input = self.transform(input)
for i in range(self.num_joints):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
if (np.min(joints[i, :2]) < 0 or
joints[i, 0] >= self.image_size[0] or
joints[i, 1] >= self.image_size[1]):
joints_vis[i, :] = 0
target, target_weight = self.generate_target(joints, joints_vis)
target = torch.from_numpy(target)
target_weight = torch.from_numpy(target_weight)
meta = {
'scale': scale,
'center': center,
'rotation': rotation,
'joints_2d': db_rec['joints_2d'],
'joints_2d_transformed': joints,
'joints_vis': joints_vis,
'source': db_rec['source']
}
return input, target, target_weight, meta