当前位置: 首页>>代码示例>>Python>>正文


Python cv2.DFT_SCALE属性代码示例

本文整理汇总了Python中cv2.DFT_SCALE属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.DFT_SCALE属性的具体用法?Python cv2.DFT_SCALE怎么用?Python cv2.DFT_SCALE使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在cv2的用法示例。


在下文中一共展示了cv2.DFT_SCALE属性的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: update

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def update(_):
        ang = np.deg2rad( cv2.getTrackbarPos('angle', win) )
        d = cv2.getTrackbarPos('d', win)
        noise = 10**(-0.1*cv2.getTrackbarPos('SNR (db)', win))

        if defocus:
            psf = defocus_kernel(d)
        else:
            psf = motion_kernel(ang, d)
        cv2.imshow('psf', psf)

        psf /= psf.sum()
        psf_pad = np.zeros_like(img)
        kh, kw = psf.shape
        psf_pad[:kh, :kw] = psf
        PSF = cv2.dft(psf_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh)
        PSF2 = (PSF**2).sum(-1)
        iPSF = PSF / (PSF2 + noise)[...,np.newaxis]
        RES = cv2.mulSpectrums(IMG, iPSF, 0)
        res = cv2.idft(RES, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
        res = np.roll(res, -kh//2, 0)
        res = np.roll(res, -kw//2, 1)
        cv2.imshow(win, res) 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:25,代码来源:deconvolution.py

示例2: state_vis

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def state_vis(self):
        f = cv2.idft(self.H, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
        h, w = f.shape
        f = np.roll(f, -h//2, 0)
        f = np.roll(f, -w//2, 1)
        kernel = np.uint8( (f-f.min()) / f.ptp()*255 )
        resp = self.last_resp
        resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255)
        vis = np.hstack([self.last_img, kernel, resp])
        return vis 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:12,代码来源:mosse.py

示例3: correlate

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def correlate(self, img):
        C = cv2.mulSpectrums(cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
        resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
        h, w = resp.shape
        _, mval, _, (mx, my) = cv2.minMaxLoc(resp)
        side_resp = resp.copy()
        cv2.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
        smean, sstd = side_resp.mean(), side_resp.std()
        psr = (mval-smean) / (sstd+eps)
        return resp, (mx-w//2, my-h//2), psr 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:12,代码来源:mosse.py

示例4: fftd

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def fftd(img, backwards=False, byRow=False):
    # shape of img can be (m,n), (m,n,1) or (m,n,2)
    # in my test, fft provided by numpy and scipy are slower than cv2.dft
    # return cv2.dft(np.float32(img), flags=((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))  # 'flags =' is necessary!
    # DFT_INVERSE: 用一维或二维逆变换取代默认的正向变换,
    # DFT_SCALE: 缩放比例标识符,根据数据元素个数平均求出其缩放结果,如有N个元素,则输出结果以1/N缩放输出,常与DFT_INVERSE搭配使用。 
    # DFT_COMPLEX_OUTPUT: 对一维或二维的实数数组进行正向变换,这样的结果虽然是复数阵列,但拥有复数的共轭对称性

    if byRow:
        return cv2.dft(np.float32(img), flags=(cv2.DFT_ROWS | cv2.DFT_COMPLEX_OUTPUT))
    else:
        return cv2.dft(np.float32(img), flags=((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))

# 实部图像 
开发者ID:ryanfwy,项目名称:KCF-DSST-py,代码行数:16,代码来源:tracker.py

示例5: ifft2

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def ifft2(img):
    img = np.float32(img)
    if img.ndim == 3:
        out = cv2.dft(img, flags=cv2.DFT_INVERSE | cv2.DFT_SCALE)
    elif img.ndim == 4:
        out = []
        for c in range(img.shape[2]):
            out.append(cv2.dft(
                img[:, :, c, :], flags=cv2.DFT_INVERSE | cv2.DFT_SCALE))
    else:
        raise Exception('only supports 3 or 4 dimensional array')

    return out 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:15,代码来源:complex.py

示例6: ifft1

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def ifft1(img):
    img = np.float32(img)
    if img.ndim == 2:
        img = img[np.newaxis, :, :]
        out = cv2.dft(img, flags=cv2.DFT_ROWS | cv2.DFT_SCALE)
        out = out.squeeze(0)
    elif img.ndim == 3:
        out = cv2.dft(img, flags=cv2.DFT_ROWS | cv2.DFT_SCALE)
    else:
        raise Exception('only supports 2 or 3 dimensional array')

    return out 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:14,代码来源:complex.py

示例7: _linear_correlation

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def _linear_correlation(self, img):
        C = cv2.mulSpectrums(
            cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
        resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
        h, w = resp.shape
        _, mval, _, (mx, my) = cv2.minMaxLoc(resp)
        side_resp = resp.copy()
        cv2.rectangle(side_resp, (mx - 5, my - 5), (mx + 5, my + 5), 0, -1)
        smean, sstd = side_resp.mean(), side_resp.std()
        psr = (mval - smean) / (sstd + self.cfg.eps)

        return resp, (mx - w // 2, my - h // 2), psr 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:14,代码来源:mosse.py

示例8: fftd

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_SCALE [as 别名]
def fftd(img, backwards=False):	
	# shape of img can be (m,n), (m,n,1) or (m,n,2)	
	# in my test, fft provided by numpy and scipy are slower than cv2.dft
	return cv2.dft(np.float32(img), flags = ((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))   # 'flags =' is necessary! 
开发者ID:uoip,项目名称:KCFnb,代码行数:6,代码来源:kcftracker.py


注:本文中的cv2.DFT_SCALE属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。