当前位置: 首页>>代码示例>>Python>>正文


Python cv2.DFT_COMPLEX_OUTPUT属性代码示例

本文整理汇总了Python中cv2.DFT_COMPLEX_OUTPUT属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.DFT_COMPLEX_OUTPUT属性的具体用法?Python cv2.DFT_COMPLEX_OUTPUT怎么用?Python cv2.DFT_COMPLEX_OUTPUT使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在cv2的用法示例。


在下文中一共展示了cv2.DFT_COMPLEX_OUTPUT属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: update

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def update(_):
        ang = np.deg2rad( cv2.getTrackbarPos('angle', win) )
        d = cv2.getTrackbarPos('d', win)
        noise = 10**(-0.1*cv2.getTrackbarPos('SNR (db)', win))

        if defocus:
            psf = defocus_kernel(d)
        else:
            psf = motion_kernel(ang, d)
        cv2.imshow('psf', psf)

        psf /= psf.sum()
        psf_pad = np.zeros_like(img)
        kh, kw = psf.shape
        psf_pad[:kh, :kw] = psf
        PSF = cv2.dft(psf_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh)
        PSF2 = (PSF**2).sum(-1)
        iPSF = PSF / (PSF2 + noise)[...,np.newaxis]
        RES = cv2.mulSpectrums(IMG, iPSF, 0)
        res = cv2.idft(RES, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
        res = np.roll(res, -kh//2, 0)
        res = np.roll(res, -kw//2, 1)
        cv2.imshow(win, res) 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:25,代码来源:deconvolution.py

示例2: __init__

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def __init__(self, frame, rect):
        x1, y1, x2, y2 = rect
        w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1])
        x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2
        self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1)
        self.size = w, h
        img = cv2.getRectSubPix(frame, (w, h), (x, y))

        self.win = cv2.createHanningWindow((w, h), cv2.CV_32F)
        g = np.zeros((h, w), np.float32)
        g[h//2, w//2] = 1
        g = cv2.GaussianBlur(g, (-1, -1), 2.0)
        g /= g.max()

        self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT)
        self.H1 = np.zeros_like(self.G)
        self.H2 = np.zeros_like(self.G)
        for i in xrange(128):
            a = self.preprocess(rnd_warp(img))
            A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT)
            self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True)
            self.H2 += cv2.mulSpectrums(     A, A, 0, conjB=True)
        self.update_kernel()
        self.update(frame) 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:26,代码来源:mosse.py

示例3: update

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def update(self, frame, rate = 0.125):
        (x, y), (w, h) = self.pos, self.size
        self.last_img = img = cv2.getRectSubPix(frame, (w, h), (x, y))
        img = self.preprocess(img)
        self.last_resp, (dx, dy), self.psr = self.correlate(img)
        self.good = self.psr > 8.0
        if not self.good:
            return

        self.pos = x+dx, y+dy
        self.last_img = img = cv2.getRectSubPix(frame, (w, h), self.pos)
        img = self.preprocess(img)

        A = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
        H1 = cv2.mulSpectrums(self.G, A, 0, conjB=True)
        H2 = cv2.mulSpectrums(     A, A, 0, conjB=True)
        self.H1 = self.H1 * (1.0-rate) + H1 * rate
        self.H2 = self.H2 * (1.0-rate) + H2 * rate
        self.update_kernel() 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:21,代码来源:mosse.py

示例4: correlate

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def correlate(self, img):
        C = cv2.mulSpectrums(cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
        resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
        h, w = resp.shape
        _, mval, _, (mx, my) = cv2.minMaxLoc(resp)
        side_resp = resp.copy()
        cv2.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
        smean, sstd = side_resp.mean(), side_resp.std()
        psr = (mval-smean) / (sstd+eps)
        return resp, (mx-w//2, my-h//2), psr 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:12,代码来源:mosse.py

示例5: fftd

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def fftd(img, backwards=False, byRow=False):
    # shape of img can be (m,n), (m,n,1) or (m,n,2)
    # in my test, fft provided by numpy and scipy are slower than cv2.dft
    # return cv2.dft(np.float32(img), flags=((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))  # 'flags =' is necessary!
    # DFT_INVERSE: 用一维或二维逆变换取代默认的正向变换,
    # DFT_SCALE: 缩放比例标识符,根据数据元素个数平均求出其缩放结果,如有N个元素,则输出结果以1/N缩放输出,常与DFT_INVERSE搭配使用。 
    # DFT_COMPLEX_OUTPUT: 对一维或二维的实数数组进行正向变换,这样的结果虽然是复数阵列,但拥有复数的共轭对称性

    if byRow:
        return cv2.dft(np.float32(img), flags=(cv2.DFT_ROWS | cv2.DFT_COMPLEX_OUTPUT))
    else:
        return cv2.dft(np.float32(img), flags=((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))

# 实部图像 
开发者ID:ryanfwy,项目名称:KCF-DSST-py,代码行数:16,代码来源:tracker.py

示例6: fft2

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def fft2(img):
    img = np.float32(img)
    if img.ndim == 2:
        out = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
    elif img.ndim == 3:
        out = []
        for c in range(img.shape[2]):
            out.append(cv2.dft(
                img[..., c], flags=cv2.DFT_COMPLEX_OUTPUT))
        out = np.stack(out, axis=2)
    else:
        raise Exception('only supports 2 or 3 dimensional array')

    return out 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:16,代码来源:complex.py

示例7: fft1

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def fft1(img):
    img = np.float32(img)
    if img.ndim == 1:
        img = img[np.newaxis, :]
        out = cv2.dft(img, flags=cv2.DFT_ROWS | cv2.DFT_COMPLEX_OUTPUT)
        out = out.squeeze(0)
    elif img.ndim == 2:
        out = cv2.dft(img, flags=cv2.DFT_ROWS | cv2.DFT_COMPLEX_OUTPUT)
    else:
        raise Exception('only supports 1 or 2 dimensional array')

    return out 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:14,代码来源:complex.py

示例8: init

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def init(self, image, init_rect):
        if image.ndim == 3:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        init_rect = init_rect.astype(int)
        init_rect[2:] += init_rect[:2]
        x1, y1, x2, y2 = init_rect
        w, h = map(cv2.getOptimalDFTSize, [x2 - x1, y2 - y1])
        x1, y1 = (x1 + x2 - w) // 2, (y1 + y2 - h) // 2
        self.t_center = x, y = x1 + 0.5 * (w - 1), y1 + 0.5 * (h - 1)
        self.t_sz = w, h
        img = cv2.getRectSubPix(image, (w, h), (x, y))

        self.win = cv2.createHanningWindow((w, h), cv2.CV_32F)
        g = np.zeros((h, w), np.float32)
        g[h // 2, w // 2] = 1
        g = cv2.GaussianBlur(g, (-1, -1), self.cfg.sigma)
        g /= g.max()

        self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT)
        self.A = np.zeros_like(self.G)
        self.B = np.zeros_like(self.G)
        for _i in range(128):
            patch = self._preprocess(self._random_warp(img))
            F = cv2.dft(patch, flags=cv2.DFT_COMPLEX_OUTPUT)
            self.A += cv2.mulSpectrums(self.G, F, 0, conjB=True)
            self.B += cv2.mulSpectrums(F, F, 0, conjB=True)
        self._update_kernel()
        self.update(image) 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:31,代码来源:mosse.py

示例9: update

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def update(self, image):
        if image.ndim == 3:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        (x, y), (w, h) = self.t_center, self.t_sz
        self.last_img = img = cv2.getRectSubPix(image, (w, h), (x, y))
        img = self._preprocess(img)
        self.last_resp, (dx, dy), self.psr = self._linear_correlation(img)
        self.good = self.psr > self.cfg.psr_thr

        if self.good:
            self.t_center = x + dx, y + dy
            self.last_img = img = cv2.getRectSubPix(
                image, (w, h), self.t_center)
            img = self._preprocess(img)

            F = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
            A = cv2.mulSpectrums(self.G, F, 0, conjB=True)
            B = cv2.mulSpectrums(F, F, 0, conjB=True)
            self.A = self.A * (1.0 - self.cfg.interp_factor) + \
                A * self.cfg.interp_factor
            self.B = self.B * (1.0 - self.cfg.interp_factor) + \
                B * self.cfg.interp_factor
            self._update_kernel()

        return np.array([x - 0.5 * (w - 1), y - 0.5 * (h - 1), w, h]) 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:28,代码来源:mosse.py

示例10: _linear_correlation

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def _linear_correlation(self, img):
        C = cv2.mulSpectrums(
            cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
        resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
        h, w = resp.shape
        _, mval, _, (mx, my) = cv2.minMaxLoc(resp)
        side_resp = resp.copy()
        cv2.rectangle(side_resp, (mx - 5, my - 5), (mx + 5, my + 5), 0, -1)
        smean, sstd = side_resp.mean(), side_resp.std()
        psr = (mval - smean) / (sstd + self.cfg.eps)

        return resp, (mx - w // 2, my - h // 2), psr 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:14,代码来源:mosse.py

示例11: fftd

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def fftd(img, backwards=False):	
	# shape of img can be (m,n), (m,n,1) or (m,n,2)	
	# in my test, fft provided by numpy and scipy are slower than cv2.dft
	return cv2.dft(np.float32(img), flags = ((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))   # 'flags =' is necessary! 
开发者ID:uoip,项目名称:KCFnb,代码行数:6,代码来源:kcftracker.py

示例12: fourier_transform

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def fourier_transform(ch_bd):

    dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
    dft_shift = np.fft.fftshift(dft)

    # get the Power Spectrum
    magnitude_spectrum = 20. * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

    psd1D = azimuthal_avg(magnitude_spectrum)

    return list(cv2.meanStdDev(psd1D)) 
开发者ID:jgrss,项目名称:spfeas,代码行数:13,代码来源:spfunctions.py

示例13: main

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def main():
    # read an image 
    img = cv2.imread('../figures/flower.png')
    
    # create cropped grayscale image from the original image
    crop_gray = cv2.cvtColor(img[100:400, 100:400], cv2.COLOR_BGR2GRAY)
    
    # take discrete fourier transform 
    dft = cv2.dft(np.float32(crop_gray),flags = cv2.DFT_COMPLEX_OUTPUT)
    dft_shift = np.fft.fftshift(dft)
    magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
    
    # plot results
    plot_dft(crop_gray, magnitude_spectrum) 
开发者ID:PacktPublishing,项目名称:Practical-Computer-Vision,代码行数:16,代码来源:03_fourier_transform.py

示例14: _get_channel_sal_magn

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def _get_channel_sal_magn(self, channel):
        """Returns the log-magnitude of the Fourier spectrum

            This method calculates the log-magnitude of the Fourier spectrum
            of a single-channel image. This image could be a regular grayscale
            image, or a single color channel of an RGB image.

            :param channel: single-channel input image
            :returns: log-magnitude of Fourier spectrum
        """
        # do FFT and get log-spectrum
        if self.use_numpy_fft:
            img_dft = np.fft.fft2(channel)
            magnitude, angle = cv2.cartToPolar(np.real(img_dft),
                                               np.imag(img_dft))
        else:
            img_dft = cv2.dft(np.float32(channel),
                              flags=cv2.DFT_COMPLEX_OUTPUT)
            magnitude, angle = cv2.cartToPolar(img_dft[:, :, 0],
                                               img_dft[:, :, 1])

        # get log amplitude
        log_ampl = np.log10(magnitude.clip(min=1e-9))

        # blur log amplitude with avg filter
        log_ampl_blur = cv2.blur(log_ampl, (3, 3))

        # residual
        residual = np.exp(log_ampl - log_ampl_blur)

        # back to cartesian frequency domain
        if self.use_numpy_fft:
            real_part, imag_part = cv2.polarToCart(residual, angle)
            img_combined = np.fft.ifft2(real_part + 1j*imag_part)
            magnitude, _ = cv2.cartToPolar(np.real(img_combined),
                                           np.imag(img_combined))
        else:
            img_dft[:, :, 0], img_dft[:, :, 1] = cv2.polarToCart(residual,
                                                                 angle)
            img_combined = cv2.idft(img_dft)
            magnitude, _ = cv2.cartToPolar(img_combined[:, :, 0],
                                           img_combined[:, :, 1])

        return magnitude 
开发者ID:PacktPublishing,项目名称:OpenCV-Computer-Vision-Projects-with-Python,代码行数:46,代码来源:saliency.py

示例15: plot_power_spectrum

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import DFT_COMPLEX_OUTPUT [as 别名]
def plot_power_spectrum(self):
        """Plots the power spectrum

            This method plots the power spectrum of the image passed to
            the class constructor.

            :returns: power spectrum
        """
        # convert the frame to grayscale if necessary
        if len(self.frame_orig.shape) > 2:
            frame = cv2.cvtColor(self.frame_orig, cv2.COLOR_BGR2GRAY)
        else:
            frame = self.frame_orig

        # expand the image to an optimal size for FFT
        rows, cols = self.frame_orig.shape[:2]
        nrows = cv2.getOptimalDFTSize(rows)
        ncols = cv2.getOptimalDFTSize(cols)
        frame = cv2.copyMakeBorder(frame, 0, ncols - cols, 0, nrows - rows,
                                   cv2.BORDER_CONSTANT, value=0)

        # do FFT and get log-spectrum
        if self.use_numpy_fft:
            img_dft = np.fft.fft2(frame)
            spectrum = np.log10(np.real(np.abs(img_dft))**2)
        else:
            img_dft = cv2.dft(np.float32(frame), flags=cv2.DFT_COMPLEX_OUTPUT)
            spectrum = np.log10(img_dft[:, :, 0]**2+img_dft[:, :, 1]**2)

        # radial average
        L = max(frame.shape)
        freqs = np.fft.fftfreq(L)[:L/2]
        dists = np.sqrt(np.fft.fftfreq(frame.shape[0])[:, np.newaxis]**2 +
                        np.fft.fftfreq(frame.shape[1])**2)
        dcount = np.histogram(dists.ravel(), bins=freqs)[0]
        histo, bins = np.histogram(dists.ravel(), bins=freqs,
                                   weights=spectrum.ravel())

        centers = (bins[:-1] + bins[1:]) / 2
        plt.plot(centers, histo/dcount)
        plt.xlabel('frequency')
        plt.ylabel('log-spectrum')
        plt.show() 
开发者ID:PacktPublishing,项目名称:OpenCV-Computer-Vision-Projects-with-Python,代码行数:45,代码来源:saliency.py


注:本文中的cv2.DFT_COMPLEX_OUTPUT属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。