当前位置: 首页>>代码示例>>Python>>正文


Python cv2.CV_8UC1属性代码示例

本文整理汇总了Python中cv2.CV_8UC1属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.CV_8UC1属性的具体用法?Python cv2.CV_8UC1怎么用?Python cv2.CV_8UC1使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在cv2的用法示例。


在下文中一共展示了cv2.CV_8UC1属性的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: process_output

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CV_8UC1 [as 别名]
def process_output(self, disparity):
        cv8uc = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
        if self.args.preview:
            cv2.imshow("disparity", cv8uc)
            cv2.waitKey(0)
        cv2.imwrite(os.path.join(self.args.folder, self.args.output), cv8uc) 
开发者ID:Algomorph,项目名称:cvcalib,代码行数:8,代码来源:stereo_matcher_app.py

示例2: applyKirschFilter

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CV_8UC1 [as 别名]
def applyKirschFilter(self):
        gray = self.curImg
        if gray.ndim > 2:
            raise Exception("illegal argument: input must be a single channel image (gray)")
        kernelG1 = np.array([[ 5,  5,  5],
                             [-3,  0, -3],
                             [-3, -3, -3]], dtype=np.float32)
        kernelG2 = np.array([[ 5,  5, -3],
                             [ 5,  0, -3],
                             [-3, -3, -3]], dtype=np.float32)
        kernelG3 = np.array([[ 5, -3, -3],
                             [ 5,  0, -3],
                             [ 5, -3, -3]], dtype=np.float32)
        kernelG4 = np.array([[-3, -3, -3],
                             [ 5,  0, -3],
                             [ 5,  5, -3]], dtype=np.float32)
        kernelG5 = np.array([[-3, -3, -3],
                             [-3,  0, -3],
                             [ 5,  5,  5]], dtype=np.float32)
        kernelG6 = np.array([[-3, -3, -3],
                             [-3,  0,  5],
                             [-3,  5,  5]], dtype=np.float32)
        kernelG7 = np.array([[-3, -3,  5],
                             [-3,  0,  5],
                             [-3, -3,  5]], dtype=np.float32)
        kernelG8 = np.array([[-3,  5,  5],
                             [-3,  0,  5],
                             [-3, -3, -3]], dtype=np.float32)
    
        g1 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG1), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g2 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG2), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g3 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG3), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g4 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG4), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g5 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG5), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g6 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG6), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g7 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG7), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        g8 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG8), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
        magn = cv2.max(g1, cv2.max(g2, cv2.max(g3, cv2.max(g4, cv2.max(g5, cv2.max(g6, cv2.max(g7, g8)))))))
        self.curImg = magn 
开发者ID:ebdulrasheed,项目名称:Diabetic-Retinopathy-Feature-Extraction-using-Fundus-Images,代码行数:41,代码来源:BloodVessels.py

示例3: float_img_to_display

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CV_8UC1 [as 别名]
def float_img_to_display(_img):
        img = _img
        max_value = 1000
        rows, cols = img.shape
        for i in range(rows):
            for j in range(cols):
                if (img[i, j] > max_value):
                    img[i, j] = max_value
        dist1 = cv2.convertScaleAbs(img)
        dist2 = cv2.normalize(dist1, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1)
        return dist1
        # return dist2 
开发者ID:hku-mars,项目名称:crossgap_il_rl,代码行数:14,代码来源:img_tools.py


注:本文中的cv2.CV_8UC1属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。