本文整理汇总了Python中cv2.COLOR_RGB2HLS属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.COLOR_RGB2HLS属性的具体用法?Python cv2.COLOR_RGB2HLS怎么用?Python cv2.COLOR_RGB2HLS使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.COLOR_RGB2HLS属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: color_grid_thresh
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def color_grid_thresh(img, s_thresh=(170,255), sx_thresh=(20, 100)):
img = np.copy(img)
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
# Sobel x
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivateive in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivateive to accentuate lines
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
# combine the two binary
binary = sxbinary | s_binary
# Stack each channel (for visual check the pixal sourse)
# color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary,s_binary)) * 255
return binary
示例2: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def __call__(self, data):
h, w, c = data.shape
assert c%3 == 0, "input channel = %d, illegal"%c
random_vars = [int(round(self.rng.uniform(-x, x))) for x in self.vars]
base = len(random_vars)
augmented_data = np.zeros(data.shape, )
for i_im in range(0, int(c/3)):
augmented_data[:,:,3*i_im:(3*i_im+3)] = \
cv2.cvtColor(data[:,:,3*i_im:(3*i_im+3)], cv2.COLOR_RGB2HLS)
hls_limits = [180, 255, 255]
for ic in range(0, c):
var = random_vars[ic%base]
limit = hls_limits[ic%base]
augmented_data[:,:,ic] = np.minimum(np.maximum(augmented_data[:,:,ic] + var, 0), limit)
for i_im in range(0, int(c/3)):
augmented_data[:,:,3*i_im:(3*i_im+3)] = \
cv2.cvtColor(augmented_data[:,:,3*i_im:(3*i_im+3)].astype(np.uint8), \
cv2.COLOR_HLS2RGB)
return augmented_data
示例3: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def __call__(self, data, idx=None, copy_id=0):
h, w, c = data.shape
assert c%3 == 0, "input channel = %d, illegal"%c
random_vars = [int(self.rng.uniform(-x, x)) for x in self.vars]
base = len(random_vars)
augmented_data = np.zeros(data.shape, )
for i_im in range(0, int(c/3)):
augmented_data[:,:,3*i_im:(3*i_im+3)] = \
cv2.cvtColor(data[:,:,3*i_im:(3*i_im+3)], cv2.COLOR_RGB2HLS)
hls_limits = [180, 255, 255]
for ic in range(0, c):
var = random_vars[ic%base]
limit = hls_limits[ic%base]
augmented_data[:,:,ic] = np.minimum(np.maximum(augmented_data[:,:,ic] + var, 0), limit)
for i_im in range(0, int(c/3)):
augmented_data[:,:,3*i_im:(3*i_im+3)] = \
cv2.cvtColor(augmented_data[:,:,3*i_im:(3*i_im+3)].astype(np.uint8), \
cv2.COLOR_HLS2RGB)
return augmented_data
示例4: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def __call__(self, data):
h, w, c = data.shape
assert c%3 == 0, "input channel = %d, illegal"%c
random_vars = [int(round(self.rng.uniform(-x, x))) for x in self.vars]
base = len(random_vars)
augmented_data = np.zeros(data.shape, )
for i_im in range(0, int(c/3)):
augmented_data[:,:,3*i_im:(3*i_im+3)] = \
cv2.cvtColor(data[:,:,3*i_im:(3*i_im+3)], cv2.COLOR_RGB2HLS)
hls_limits = [180, 255, 255]
for ic in range(0, c):
var = random_vars[ic%base]
limit = hls_limits[ic%base]
augmented_data[:,:,ic] = np.minimum(np.maximum(augmented_data[:,:,ic] + var, 0), limit)
for i_im in range(0, int(c/3)):
augmented_data[:,:,3*i_im:(3*i_im+3)] = \
cv2.cvtColor(augmented_data[:,:,3*i_im:(3*i_im+3)].astype(np.uint8), \
cv2.COLOR_HLS2RGB)
return augmented_data
示例5: get_statistics
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def get_statistics(img):
img = np.clip(img, a_min=0.0, a_max=1.0)
HLS = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
lum = img[:, :, 0] * 0.27 + img[:, :, 1] * 0.67 + img[:, :, 2] * 0.06
sat = HLS[:, :, 2].mean()
return [lum.mean(), lum.std() * 2, sat]
示例6: color_grid_thresh_dynamic
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def color_grid_thresh_dynamic(img, s_thresh=(170,255), sx_thresh=(20, 100)):
img = np.copy(img)
height = img.shape[0]
width = img.shape[1]
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
# Sobel x
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivateive in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivateive to accentuate lines
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
sxbinary[:, :width//2] = 0 # use the left side
s_binary[:,width//2:] = 0 # use the right side
# combine the two binary
binary = sxbinary | s_binary
# Stack each channel (for visual check the pixal sourse)
# color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary,s_binary)) * 255
return binary
示例7: yellow_grid_thresh
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def yellow_grid_thresh(img, y_low=(10,50,0), y_high=(30,255,255), sx_thresh=(20, 100)):
img = np.copy(img)
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
# Sobel x
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivateive in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivateive to accentuate lines
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
# # Threshold color channel
# s_binary = np.zeros_like(s_channel)
# s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
yellow_filtered = yellow_filter(img, y_low, y_high)
yellow_filtered[yellow_filtered > 0] = 1 # transfer to binary
# combine the two binary, right and left
sxbinary[:,:640] = 0 # use right side of sxbinary
yellow_filtered[:,640:] = 0 # use left side of yellow filtered
binary = sxbinary | yellow_filtered
# Stack each channel (for visual check the pixal sourse)
# color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary,s_binary)) * 255
return binary
示例8: test_thresh_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def test_thresh_image(image, s_thresh, sx_thresh):
"""
adjust the thresh parameters
"""
img = mpimg.imread(image)
img_threshed = color_grid_thresh(img, s_thresh=s_thresh, sx_thresh=sx_thresh)
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
# Sobel x
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivateive in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivateive to accentuate lines
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
# combine the two binary
binary = sxbinary | s_binary
plt.figure(),plt.imshow(img),plt.title("original")
plt.figure(),plt.imshow(sxbinary, cmap='gray'),plt.title("x-gradient")
plt.figure(),plt.imshow(s_binary, cmap='gray'),plt.title("color-threshed")
plt.figure(),plt.imshow(s_channel, cmap='gray'),plt.title("s_channel")
plt.figure(),plt.imshow(img_threshed, cmap='gray'),plt.title("combined-threshed")
plt.show()
示例9: test_random_colorspace
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def test_random_colorspace(self):
def _images_to_cspaces(images, choices):
result = np.full((len(images),), -1, dtype=np.int32)
for i, image_aug in enumerate(images):
for j, choice in enumerate(choices):
if np.array_equal(image_aug, choice):
result[i] = j
break
assert np.all(result != -1)
return result
image = np.arange(6*6*3).astype(np.uint8).reshape((6, 6, 3))
expected_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)[:, :, 2:2+1]
expected_hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)[:, :, 1:1+1]
child = _BatchCapturingDummyAugmenter()
aug = iaa.WithBrightnessChannels(
children=child,
to_colorspace=[iaa.CSPACE_HSV, iaa.CSPACE_HLS])
images = [np.copy(image) for _ in sm.xrange(100)]
_ = aug(images=images)
images_aug1 = child.last_batch.images
_ = aug(images=images)
images_aug2 = child.last_batch.images
cspaces1 = _images_to_cspaces(images_aug1, [expected_hsv, expected_hls])
cspaces2 = _images_to_cspaces(images_aug2, [expected_hsv, expected_hls])
assert np.any(cspaces1 != cspaces2)
assert len(np.unique(cspaces1)) > 1
assert len(np.unique(cspaces2)) > 1
示例10: test_basic_functionality
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def test_basic_functionality(self):
# basic functionality test
aug = iaa.FastSnowyLandscape(
lightness_threshold=100,
lightness_multiplier=2.0)
image = np.arange(0, 6*6*3).reshape((6, 6, 3)).astype(np.uint8)
image_hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
mask = (image_hls[..., 1] < 100)
expected = np.copy(image_hls).astype(np.float32)
expected[..., 1][mask] *= 2.0
expected = np.clip(np.round(expected), 0, 255).astype(np.uint8)
expected = cv2.cvtColor(expected, cv2.COLOR_HLS2RGB)
observed = aug.augment_image(image)
assert np.array_equal(observed, expected)
示例11: test_vary_lightness_threshold
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def test_vary_lightness_threshold(self):
# test when varying lightness_threshold between images
image = np.arange(0, 6*6*3).reshape((6, 6, 3)).astype(np.uint8)
image_hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
aug = iaa.FastSnowyLandscape(
lightness_threshold=_TwoValueParam(75, 125),
lightness_multiplier=2.0)
mask = (image_hls[..., 1] < 75)
expected1 = np.copy(image_hls).astype(np.float64)
expected1[..., 1][mask] *= 2.0
expected1 = np.clip(np.round(expected1), 0, 255).astype(np.uint8)
expected1 = cv2.cvtColor(expected1, cv2.COLOR_HLS2RGB)
mask = (image_hls[..., 1] < 125)
expected2 = np.copy(image_hls).astype(np.float64)
expected2[..., 1][mask] *= 2.0
expected2 = np.clip(np.round(expected2), 0, 255).astype(np.uint8)
expected2 = cv2.cvtColor(expected2, cv2.COLOR_HLS2RGB)
observed = aug.augment_images([image] * 4)
assert np.array_equal(observed[0], expected1)
assert np.array_equal(observed[1], expected2)
assert np.array_equal(observed[2], expected1)
assert np.array_equal(observed[3], expected2)
示例12: test_vary_lightness_multiplier
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def test_vary_lightness_multiplier(self):
# test when varying lightness_multiplier between images
image = np.arange(0, 6*6*3).reshape((6, 6, 3)).astype(np.uint8)
image_hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
aug = iaa.FastSnowyLandscape(
lightness_threshold=100,
lightness_multiplier=_TwoValueParam(1.5, 2.0))
mask = (image_hls[..., 1] < 100)
expected1 = np.copy(image_hls).astype(np.float64)
expected1[..., 1][mask] *= 1.5
expected1 = np.clip(np.round(expected1), 0, 255).astype(np.uint8)
expected1 = cv2.cvtColor(expected1, cv2.COLOR_HLS2RGB)
mask = (image_hls[..., 1] < 100)
expected2 = np.copy(image_hls).astype(np.float64)
expected2[..., 1][mask] *= 2.0
expected2 = np.clip(np.round(expected2), 0, 255).astype(np.uint8)
expected2 = cv2.cvtColor(expected2, cv2.COLOR_HLS2RGB)
observed = aug.augment_images([image] * 4)
assert np.array_equal(observed[0], expected1)
assert np.array_equal(observed[1], expected2)
assert np.array_equal(observed[2], expected1)
assert np.array_equal(observed[3], expected2)
示例13: random_shadow
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def random_shadow(image):
"""
Generates and adds random shadow
"""
# (x1, y1) and (x2, y2) forms a line
# xm, ym gives all the locations of the image
x1, y1 = IMAGE_WIDTH * np.random.rand(), 0
x2, y2 = IMAGE_WIDTH * np.random.rand(), IMAGE_HEIGHT
xm, ym = np.mgrid[0:IMAGE_HEIGHT, 0:IMAGE_WIDTH]
# mathematically speaking, we want to set 1 below the line and zero otherwise
# Our coordinate is up side down. So, the above the line:
# (ym-y1)/(xm-x1) > (y2-y1)/(x2-x1)
# as x2 == x1 causes zero-division problem, we'll write it in the below form:
# (ym-y1)*(x2-x1) - (y2-y1)*(xm-x1) > 0
mask = np.zeros_like(image[:, :, 1])
mask[(ym - y1) * (x2 - x1) - (y2 - y1) * (xm - x1) > 0] = 1
# choose which side should have shadow and adjust saturation
cond = mask == np.random.randint(2)
s_ratio = np.random.uniform(low=0.2, high=0.5)
# adjust Saturation in HLS(Hue, Light, Saturation)
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
hls[:, :, 1][cond] = hls[:, :, 1][cond] * s_ratio
return cv2.cvtColor(hls, cv2.COLOR_HLS2RGB)
示例14: random_color_warp
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def random_color_warp(image, d_h=None, d_s=None, d_l=None):
""" Given an RGB image [H x W x 3], add random hue, saturation and luminosity to the image
Code adapted from: https://github.com/yuxng/PoseCNN/blob/master/lib/utils/blob.py
"""
H, W, _ = image.shape
image_color_warped = np.zeros_like(image)
# Set random hue, luminosity and saturation which ranges from -0.1 to 0.1
if d_h is None:
d_h = (random.random() - 0.5) * 0.2 * 256
if d_l is None:
d_l = (random.random() - 0.5) * 0.2 * 256
if d_s is None:
d_s = (random.random() - 0.5) * 0.2 * 256
# Convert the RGB to HLS
hls = cv2.cvtColor(image.round().astype(np.uint8), cv2.COLOR_RGB2HLS)
h, l, s = cv2.split(hls)
# Add the values to the image H, L, S
new_h = (np.round((h + d_h)) % 256).astype(np.uint8)
new_l = np.round(np.clip(l + d_l, 0, 255)).astype(np.uint8)
new_s = np.round(np.clip(s + d_s, 0, 255)).astype(np.uint8)
# Convert the HLS to RGB
new_hls = cv2.merge((new_h, new_l, new_s)).astype(np.uint8)
new_im = cv2.cvtColor(new_hls, cv2.COLOR_HLS2RGB)
image_color_warped = new_im.astype(np.float32)
return image_color_warped
示例15: random_shadow
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_RGB2HLS [as 别名]
def random_shadow(image):
"""
Generates and adds random shadow
"""
# (x1, y1) and (x2, y2) forms a line
# xm, ym gives all the locations of the image
x1, y1 = IMAGE_WIDTH * np.random.rand(), 0
x2, y2 = IMAGE_WIDTH * np.random.rand(), IMAGE_HEIGHT
xm, ym = np.mgrid[0:IMAGE_HEIGHT, 0:IMAGE_WIDTH]
# mathematically speaking, we want to set 1 below the line and zero otherwise
# Our coordinate is up side down. So, the above the line:
# (ym-y1)/(xm-x1) > (y2-y1)/(x2-x1)
# as x2 == x1 causes zero-division problem, we'll write it in the below form:
# (ym-y1)*(x2-x1) - (y2-y1)*(xm-x1) > 0
mask = np.zeros_like(image[:, :, 1])
mask[(ym - y1) * (x2 - x1) - (y2 - y1) * (xm - x1) > 0] = 1
# choose which side should have shadow and adjust saturation
cond = mask == np.random.randint(2)
s_ratio = np.random.uniform(low=0.2, high=0.5)
# adjust Saturation in HLS(Hue, Light, Saturation)
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
hls[:, :, 1][cond] = hls[:, :, 1][cond] * s_ratio
return cv2.cvtColor(hls, cv2.COLOR_HLS2RGB)