本文整理汇总了Python中cv2.COLOR_GRAY2BGRA属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.COLOR_GRAY2BGRA属性的具体用法?Python cv2.COLOR_GRAY2BGRA怎么用?Python cv2.COLOR_GRAY2BGRA使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.COLOR_GRAY2BGRA属性的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: enable_alpha
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def enable_alpha(self):
if self.image_channels < 4:
with_alpha = np.zeros((self.size[1], self.size[0], 4), self.image.dtype)
if self.image_channels == 3:
cv2.cvtColor(self.image, cv2.COLOR_BGR2BGRA, with_alpha)
else:
cv2.cvtColor(self.image, cv2.COLOR_GRAY2BGRA, with_alpha)
self.image = with_alpha
示例2: to_alpha
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def to_alpha(logo):
if has_alpha(logo):
return logo
if is_gray(logo):
return cv2.cvtColor(logo, cv2.COLOR_GRAY2BGRA)
else:
return cv2.cvtColor(logo, cv2.COLOR_BGR2BGRA)
示例3: spatter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def spatter(x, severity=1):
c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
(0.65, 0.3, 3, 0.68, 0.6, 0),
(0.65, 0.3, 2, 0.68, 0.5, 0),
(0.65, 0.3, 1, 0.65, 1.5, 1),
(0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
示例4: spatter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def spatter(x, severity=1):
c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
(0.65, 0.3, 3, 0.68, 0.6, 0),
(0.65, 0.3, 2, 0.68, 0.5, 0),
(0.65, 0.3, 1, 0.65, 1.5, 1),
(0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
# ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
# ker -= np.mean(ker)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# m = np.abs(m) ** (1/c[4])
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
示例5: spatter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def spatter(x, severity=1):
c = [(0.62,0.1,0.7,0.7,0.5,0),
(0.65,0.1,0.8,0.7,0.5,0),
(0.65,0.3,1,0.69,0.5,0),
(0.65,0.1,0.7,0.69,0.6,1),
(0.65,0.1,0.5,0.68,0.6,1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
# ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
# ker -= np.mean(ker)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# m = np.abs(m) ** (1/c[4])
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
示例6: spatter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def spatter(x, severity=1):
c = [(0.62,0.1,0.7,0.7,0.6,0),
(0.65,0.1,0.8,0.7,0.6,0),
(0.65,0.3,1,0.69,0.6,0),
(0.65,0.1,0.7,0.68,0.6,1),
(0.65,0.1,0.5,0.67,0.6,1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
# ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
# ker -= np.mean(ker)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# m = np.abs(m) ** (1/c[4])
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
示例7: spatter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def spatter(x, severity=1):
c = [(0.65,0.3,4,0.69,0.9,0),
(0.65,0.3,3.5,0.68,0.9,0),
(0.65,0.3,3,0.68,0.8,0),
(0.65,0.3,1.2,0.65,1.8,1),
(0.67,0.4,1.2,0.65,1.8,1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
# ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
# ker -= np.mean(ker)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# m = np.abs(m) ** (1/c[4])
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
示例8: predict_patients
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_GRAY2BGRA [as 别名]
def predict_patients(patients_dir, model_path, holdout, patient_predictions, model_type):
model = get_unet(0.001)
model.load_weights(model_path)
for item_name in os.listdir(patients_dir):
if not os.path.isdir(patients_dir + item_name):
continue
patient_id = item_name
if holdout >= 0:
patient_fold = helpers.get_patient_fold(patient_id, submission_set_neg=True)
if patient_fold < 0:
if holdout != 0:
continue
else:
patient_fold %= 3
if patient_fold != holdout:
continue
# if "100953483028192176989979435275" not in patient_id:
# continue
print(patient_id)
patient_dir = patients_dir + patient_id + "/"
mass = 0
img_type = "_i" if model_type == "masses" else "_c"
slices = glob.glob(patient_dir + "*" + img_type + ".png")
if model_type == "emphysema":
slices = slices[int(len(slices) / 2):]
for img_path in slices:
src_img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
src_img = cv2.resize(src_img, dsize=(settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE))
src_img = prepare_image_for_net(src_img)
p = model.predict(src_img, batch_size=1)
p[p < 0.5] = 0
mass += p.sum()
p = p[0, :, :, 0] * 255
# cv2.imwrite(img_path.replace("_i.png", "_mass.png"), p)
src_img = src_img.reshape((settings.SEGMENTER_IMG_SIZE, settings.SEGMENTER_IMG_SIZE))
src_img *= 255
# src_img = cv2.cvtColor(src_img.astype(numpy.uint8), cv2.COLOR_GRAY2BGR)
# p = cv2.cvtColor(p.astype(numpy.uint8), cv2.COLOR_GRAY2BGRA)
src_img = cv2.addWeighted(p.astype(numpy.uint8), 0.2, src_img.astype(numpy.uint8), 1 - 0.2, 0)
cv2.imwrite(img_path.replace(img_type + ".png", "_" + model_type + "o.png"), src_img)
if mass > 1:
print(model_type + ": ", mass)
patient_predictions.append((patient_id, mass))
df = pandas.DataFrame(patient_predictions, columns=["patient_id", "prediction"])
df.to_csv(settings.BASE_DIR + model_type + "_predictions.csv", index=False)