本文整理汇总了Python中cv2.COLOR_BGR2HSV属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.COLOR_BGR2HSV属性的具体用法?Python cv2.COLOR_BGR2HSV怎么用?Python cv2.COLOR_BGR2HSV使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.COLOR_BGR2HSV属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: standard_test
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def standard_test(self):
for fnum in range(self.start_fnum, self.stop_fnum):
frame = util.get_frame(self.capture, fnum)
frame = frame[280:, :]
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(frame_HSV, (self.low_H, self.low_S, self.low_V),
(self.high_H, self.high_S, self.high_V))
res = cv2.bitwise_and(frame, frame, mask=mask)
res_inv = cv2.bitwise_and(frame, frame, mask=cv2.bitwise_not(mask))
cv2.imshow(self.window_name, mask)
cv2.imshow('Video Capture AND', res)
cv2.imshow('Video Capture INV', res_inv)
if cv2.waitKey(30) & 0xFF == ord('q'):
break
# A number of methods corresponding to the various trackbars available.
示例2: remove_other_color
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def remove_other_color(img):
frame = cv2.GaussianBlur(img, (3,3), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# define range of blue color in HSV
lower_blue = np.array([100,128,0])
upper_blue = np.array([215,255,255])
# Threshold the HSV image to get only blue colors
mask_blue = cv2.inRange(hsv, lower_blue, upper_blue)
lower_white = np.array([0,0,128], dtype=np.uint8)
upper_white = np.array([255,255,255], dtype=np.uint8)
# Threshold the HSV image to get only blue colors
mask_white = cv2.inRange(hsv, lower_white, upper_white)
lower_black = np.array([0,0,0], dtype=np.uint8)
upper_black = np.array([170,150,50], dtype=np.uint8)
mask_black = cv2.inRange(hsv, lower_black, upper_black)
mask_1 = cv2.bitwise_or(mask_blue, mask_white)
mask = cv2.bitwise_or(mask_1, mask_black)
# Bitwise-AND mask and original image
#res = cv2.bitwise_and(frame,frame, mask= mask)
return mask
示例3: augment_hsv
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
x = (np.random.uniform(-1, 1, 3) * np.array([hgain, sgain, vgain]) + 1).astype(np.float32) # random gains
img_hsv = (cv2.cvtColor(img, cv2.COLOR_BGR2HSV) * x.reshape((1, 1, 3))).clip(None, 255).astype(np.uint8)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): # original version
# # SV augmentation by 50%
# img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val
#
# S = img_hsv[:, :, 1].astype(np.float32) # saturation
# V = img_hsv[:, :, 2].astype(np.float32) # value
#
# a = random.uniform(-1, 1) * sgain + 1
# b = random.uniform(-1, 1) * vgain + 1
# S *= a
# V *= b
#
# img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
# img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
# cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
示例4: _update_mean_shift_bookkeeping
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def _update_mean_shift_bookkeeping(self, frame, box_grouped):
"""Preprocess all valid bounding boxes for mean-shift tracking
This method preprocesses all relevant bounding boxes (those that
have been detected by both mean-shift tracking and saliency) for
the next mean-shift step.
:param frame: current RGB input frame
:param box_grouped: list of bounding boxes
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
self.object_roi = []
self.object_box = []
for box in box_grouped:
(x, y, w, h) = box
hsv_roi = hsv[y:y + h, x:x + w]
mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),
np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
self.object_roi.append(roi_hist)
self.object_box.append(box)
示例5: calculate_roi_hist
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def calculate_roi_hist(self, frame):
"""Calculates region of interest histogram.
Args:
frame: The np.array image frame to calculate ROI histogram for.
"""
(x, y, w, h) = self.box
roi = frame[y:y + h, x:x + w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),
np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0, 1], mask, [180, 255],
[0, 180, 0, 255])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
self.roi_hist = roi_hist
# Run this every frame
示例6: run
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def run(self, frame):
"""Processes a single frame.
Args:
frame: The np.array image frame.
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv], [0, 1], self.roi_hist, [0, 180, 0, 255], 1)
_, self.box = cv2.CamShift(dst, self.box, self.term_crit)
(x, y, x2, y2) = self.glob_to_relative(
(self.box[0], self.box[1], self.box[0] + self.box[2],
self.box[1] + self.box[3]))
self.annotation.bbox.left = x
self.annotation.bbox.top = y
self.annotation.bbox.right = x2
self.annotation.bbox.bottom = y2
self.age = self.age + 1
self.degrade()
示例7: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def __call__(self, img, labelmap=None, maskmap=None):
assert isinstance(img, np.ndarray)
assert labelmap is None or isinstance(labelmap, np.ndarray)
assert maskmap is None or isinstance(maskmap, np.ndarray)
if random.random() > self.ratio:
return img, labelmap, maskmap
img = img.astype(np.float32)
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
img[:, :, 0] += random.uniform(-self.delta, self.delta)
img[:, :, 0][img[:, :, 0] > 360] -= 360
img[:, :, 0][img[:, :, 0] < 0] += 360
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
img = np.clip(img, 0, 255).astype(np.uint8)
return img, labelmap, maskmap
示例8: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def __call__(self, image):
if self.contrast_range is not None:
contrast_factor = _uniform(self.contrast_range)
image = adjust_contrast(image,contrast_factor)
if self.brightness_range is not None:
brightness_delta = _uniform(self.brightness_range)
image = adjust_brightness(image, brightness_delta)
if self.hue_range is not None or self.saturation_range is not None:
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
if self.hue_range is not None:
hue_delta = _uniform(self.hue_range)
image = adjust_hue(image, hue_delta)
if self.saturation_range is not None:
saturation_factor = _uniform(self.saturation_range)
image = adjust_saturation(image, saturation_factor)
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
示例9: __call__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def __call__(self, image):
""" Apply a visual effect on the image.
Args
image: Image to adjust
"""
if self.contrast_factor:
image = adjust_contrast(image, self.contrast_factor)
if self.brightness_delta:
image = adjust_brightness(image, self.brightness_delta)
if self.hue_delta or self.saturation_factor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
if self.hue_delta:
image = adjust_hue(image, self.hue_delta)
if self.saturation_factor:
image = adjust_saturation(image, self.saturation_factor)
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
示例10: capture_histogram
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def capture_histogram(path_of_sample):
# read the image
color = cv2.imread(path_of_sample)
# convert to HSV
color_hsv = cv2.cvtColor(color, cv2.COLOR_BGR2HSV)
# compute the histogram
object_hist = cv2.calcHist([color_hsv], # image
[0, 1], # channels
None, # no mask
[180, 256], # size of histogram
[0, 180, 0, 256] # channel values
)
# min max normalization
cv2.normalize(object_hist, object_hist, 0, 255, cv2.NORM_MINMAX)
return object_hist
开发者ID:PacktPublishing,项目名称:Hands-On-Machine-Learning-with-OpenCV-4,代码行数:22,代码来源:object_detection_using_color.py
示例11: face_whiten
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def face_whiten(self, im_bgr, whiten_rate=0.15):
"""Face whitening.
Parameters
----------
im_bgr: mat
The Mat data format of reading from the original image using opencv.
whiten_rate: float, default is 0.15
The face whitening rate.
Returns
-------
type: mat
The result of face whitening.
"""
im_hsv = cv2.cvtColor(im_bgr, cv2.COLOR_BGR2HSV)
im_hsv[:,:,-1] = np.minimum(im_hsv[:,:,-1] * (1 + whiten_rate), 255).astype('uint8')
im_whiten = cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR)
return im_whiten
示例12: augment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def augment(self, image, target):
"""Augments the data.
Args:
image: The image.
target: The target image.
Returns:
A tuple of augmented image and target image.
"""
# Sample the color factor.
factor = np.random.uniform(self._min_delta, self._max_delta)
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hsv_image[:, :, 1] *= factor
hsv_image[:, :, 1] = np.clip(hsv_image[:, :, 1], 0.0, 1.0)
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
return image, target
示例13: threshold_video
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def threshold_video(lower_color, upper_color, blur):
# Convert BGR to HSV
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
# hold the HSV image to get only red colors
mask = cv2.inRange(hsv, lower_color, upper_color)
# Returns the masked imageBlurs video to smooth out image
return mask
# Finds the tape targets from the masked image and displays them on original stream + network tales
示例14: _detect_team_color
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def _detect_team_color(self, pixels):
criteria = \
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
pixels = np.array(pixels.reshape((-1, 3)), dtype=np.float32)
ret, label, center = cv2.kmeans(
pixels, 2, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# one is black, another is the team color.
colors = np.array(center, dtype=np.uint8).reshape((1, 2, 3))
colors_hsv = cv2.cvtColor(colors, cv2.COLOR_BGR2HSV)
x = np.argmax(colors_hsv[:, :, 2])
team_color_bgr = colors[0, x, :]
team_color_hsv = colors_hsv[0, x, :]
return {
'rgb': cv2.cvtColor(colors, cv2.COLOR_BGR2RGB).tolist()[0][x],
'hsv': cv2.cvtColor(colors, cv2.COLOR_BGR2HSV).tolist()[0][x],
}
示例15: analyze_team_colors
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2HSV [as 别名]
def analyze_team_colors(self, context, img):
# スクリーンショットからチームカラーを推測
assert 'won' in context['game']
assert img is not None
if context['game']['won']:
my_team_color_bgr = img[115:116, 1228:1229]
counter_team_color_bgr = img[452:453, 1228:1229]
else:
counter_team_color_bgr = img[115:116, 1228:1229]
my_team_color_bgr = img[452:453, 1228:1229]
my_team_color = {
'rgb': cv2.cvtColor(my_team_color_bgr, cv2.COLOR_BGR2RGB).tolist()[0][0],
'hsv': cv2.cvtColor(my_team_color_bgr, cv2.COLOR_BGR2HSV).tolist()[0][0],
}
counter_team_color = {
'rgb': cv2.cvtColor(counter_team_color_bgr, cv2.COLOR_BGR2RGB).tolist()[0][0],
'hsv': cv2.cvtColor(counter_team_color_bgr, cv2.COLOR_BGR2HSV).tolist()[0][0],
}
return (my_team_color, counter_team_color)