本文整理汇总了Python中cv2.COLOR_BGR2GRAY属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.COLOR_BGR2GRAY属性的具体用法?Python cv2.COLOR_BGR2GRAY怎么用?Python cv2.COLOR_BGR2GRAY使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.COLOR_BGR2GRAY属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def main():
imagePath = "img.jpg"
img = cv2.imread(imagePath)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
generate_histogram(gray)
cv2.imwrite("before.jpg", gray)
gray = cv2.equalizeHist(gray)
generate_histogram(gray)
cv2.imwrite("after.jpg",gray)
return 0
示例2: prediction
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def prediction(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.GaussianBlur(image, (21, 21), 0)
if self.avg is None:
self.avg = image.copy().astype(float)
cv2.accumulateWeighted(image, self.avg, 0.5)
frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg))
thresh = cv2.threshold(
frameDelta, DELTA_THRESH, 255,
cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
self.avg = image.copy().astype(float)
return cnts
示例3: movement
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def movement(mat_1,mat_2):
mat_1_gray = cv2.cvtColor(mat_1.copy(),cv2.COLOR_BGR2GRAY)
mat_1_gray = cv2.blur(mat_1_gray,(blur1,blur1))
_,mat_1_gray = cv2.threshold(mat_1_gray,100,255,0)
mat_2_gray = cv2.cvtColor(mat_2.copy(),cv2.COLOR_BGR2GRAY)
mat_2_gray = cv2.blur(mat_2_gray,(blur1,blur1))
_,mat_2_gray = cv2.threshold(mat_2_gray,100,255,0)
mat_2_gray = cv2.bitwise_xor(mat_1_gray,mat_2_gray)
mat_2_gray = cv2.blur(mat_2_gray,(blur2,blur2))
_,mat_2_gray = cv2.threshold(mat_2_gray,70,255,0)
mat_2_gray = cv2.erode(mat_2_gray,np.ones((erodeval,erodeval)))
mat_2_gray = cv2.dilate(mat_2_gray,np.ones((4,4)))
_, contours,__ = cv2.findContours(mat_2_gray,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:return True #If there were any movements
return False #if not
#Pedestrian Recognition Thread
示例4: _augment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def _augment(self, img, r):
old_dtype = img.dtype
if img.ndim == 3:
if self.rgb is not None:
m = cv2.COLOR_RGB2GRAY if self.rgb else cv2.COLOR_BGR2GRAY
grey = cv2.cvtColor(img.astype('float32'), m)
mean = np.mean(grey)
else:
mean = np.mean(img, axis=(0, 1), keepdims=True)
else:
mean = np.mean(img)
img = img * r + mean * (1 - r)
if self.clip or old_dtype == np.uint8:
img = np.clip(img, 0, 255)
return img.astype(old_dtype)
示例5: getPeakFeatures
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def getPeakFeatures():
net = DecafNet()
features = numpy.zeros((number_sequences,feature_length))
labels = numpy.zeros((number_sequences,1))
counter = 0
# Maybe sort them
for participant in os.listdir(os.path.join(data_dir,image_dir)):
for sequence in os.listdir(os.path.join(data_dir,image_dir, participant)):
if sequence != ".DS_Store":
image_files = sorted(os.listdir(os.path.join(data_dir,image_dir, participant,sequence)))
image_file = image_files[-1]
print counter, image_file
imarray = cv2.imread(os.path.join(data_dir,image_dir, participant,sequence,image_file))
imarray = cv2.cvtColor(imarray,cv2.COLOR_BGR2GRAY)
scores = net.classify(imarray, center_only=True)
features[counter] = net.feature(feature_level)#.flatten()
label_file = open(os.path.join(data_dir,label_dir, participant,sequence,image_file[:-4]+"_emotion.txt"))
labels[counter] = eval(label_file.read())
label_file.close()
counter += 1
numpy.save("featuresPeak5",features)
numpy.save("labelsPeak5",labels)
示例6: test_motion
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def test_motion():
image = cv2.imread("./imgs/image.jpeg")
print(image.shape)
detector = Detector_Motion()
image2 = cv2.imread("./imgs/image_box.jpg")
print(image2.shape)
assert image.shape == image2.shape
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image2 = cv2.GaussianBlur(image2, (21, 21), 0)
detector.avg = image2.astype(float)
output = detector.prediction(image)
df = detector.filter_prediction(output, image)
image = detector.draw_boxes(image, df)
print(df)
assert df.shape[0] == 1
cv2.imwrite("./imgs/outputcv.jpg", image)
示例7: live_undistort
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def live_undistort(camera, camera_matrix, distortion_coefficients):
""" Using a given calibration matrix, display the distorted, undistorted, and cropped frame"""
scaled_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(
camera_matrix, distortion_coefficients, camera.size, 1, camera.size
)
while True:
ret, frame = camera.cap.read()
assert ret
distorted_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
undistorted_frame = cv2.undistort(
distorted_frame, camera_matrix, distortion_coefficients, None, scaled_camera_matrix,
)
roi_x, roi_y, roi_w, roi_h = roi
cropped_frame = undistorted_frame[roi_y : roi_y + roi_h, roi_x : roi_x + roi_w]
cv2.imshow("distorted %s" % (distorted_frame.shape,), distorted_frame)
cv2.imshow("undistorted %s" % (undistorted_frame.shape,), undistorted_frame)
cv2.imshow("cropped %s" % (cropped_frame.shape,), cropped_frame)
cv2.waitKey(10)
示例8: test_heatmaps
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def test_heatmaps(heatmaps,img,i):
heatmaps=heatmaps.numpy()
#heatmaps=np.squeeze(heatmaps)
heatmaps=heatmaps[:,:64,:]
heatmaps=heatmaps.transpose(1,2,0)
print('heatmap inside shape is',heatmaps.shape)
## print('----------------here')
## print(heatmaps.shape)
img=img.numpy()
#img=np.squeeze(img)
img=img.transpose(1,2,0)
img=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# print('heatmaps',heatmaps.shape)
heatmaps = cv2.resize(heatmaps,(0,0), fx=4,fy=4)
# print('heatmapsafter',heatmaps.shape)
for j in range(0, 16):
heatmap = heatmaps[:,:,j]
heatmap = heatmap.reshape((256,256,1))
heatmapimg = np.array(heatmap * 255, dtype = np.uint8)
heatmap = cv2.applyColorMap(heatmapimg, cv2.COLORMAP_JET)
heatmap = heatmap/255
plt.imshow(img)
plt.imshow(heatmap, alpha=0.5)
plt.show()
#plt.savefig('hmtestpadh36'+str(i)+js[j]+'.png')
示例9: test
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def test():
"""
read the pickle file on disk and implement undistor on image
show the oringal/undistort image
"""
print("Reading the pickle file...")
pickle_file = open("./camera_cal.p", "rb")
dist_pickle = pickle.load(pickle_file)
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]
pickle_file.close()
print("Reading the sample image...")
img = cv2.imread('corners_founded/corners_found13.jpg')
img_size = (img.shape[1],img.shape[0])
dst = cv2.undistort(img, mtx, dist, None, mtx)
# dst = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
# Visualize undistortion
print("Visulize the result...")
f, (ax1,ax2) = plt.subplots(1,2, figsize=(20,10))
ax1.imshow(img), ax1.set_title('Original Image', fontsize=15)
ax2.imshow(dst), ax2.set_title('Undistored Image', fontsize=15)
plt.show()
示例10: search
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def search(self, query_keypoints, query_descriptors):
# Initialize the dictionary of results
results = {}
# Loop over the book cover images
for path in self.cover_paths:
# Load the query image, convert it to greyscale, and extract keypoints and descriptors
cover = cv2.imread(path)
gray = cv2.cvtColor(cover, cv2.COLOR_BGR2GRAY)
(keypoints, descriptors) = self.descriptor.describe(gray)
# Determine the number of matched, inlier keypoints, and update the results
score = self.match(query_keypoints, query_descriptors, keypoints, descriptors)
results[path] = score
# If matches were found, sort them
if len(results) > 0:
results = sorted([(v, k) for (k, v) in results.items() if v > 0], reverse=True)
# Return the results
return results
示例11: get_face
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def get_face(detector, image, cpu=False):
if cpu:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
try:
box = detector(image)[0]
x1 = box.left()
y1 = box.top()
x2 = box.right()
y2 = box.bottom()
return [x1, y1, x2, y2]
except:
return None
else:
image = cv2.resize(image, None, fx=0.5, fy=0.5)
box = detector.detect_from_image(image)[0]
if box is None:
return None
return (2*box[:4]).astype(int)
示例12: detect_face
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def detect_face(img_path, cc_path='../files/haarcascade_frontalface_default.xml'):
"""
Detect the face from the image, return colored face
"""
cc = cv2.CascadeClassifier(os.path.abspath(cc_path))
img_path = os.path.abspath(img_path)
img = cv2.imread(img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = cc.detectMultiScale(gray, 1.3, 5)
roi_color = None
if len(faces) == 0:
logging.exception(img_path + ': No face found')
else:
x,y,w,h = faces[0]
_h, _w = compute_size(h, w)
roi_color = img[y - _h:y + h + _h, x - _w:x + w + _w]
return roi_color
示例13: find_blank_rows_h
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def find_blank_rows_h(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
im_bw = np.zeros(gray_image.shape)
im_bw[gray_image > 127] = 0
im_bw[gray_image <= 127] = 1
row_sum = np.sum(im_bw, axis=1)
cum_sum = np.zeros(row_sum.shape)
cum_sum[0] = row_sum[0]
for i, sum in enumerate(row_sum[1:]):
cum_sum[i+1] = cum_sum[i] + sum
blank_rows = []
for i, sum in enumerate(cum_sum):
if is_blank(cum_sum, i):
blank_rows.append(i)
return blank_rows
# check n last rows
示例14: coherence_filter
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
h, w = img.shape[:2]
for i in xrange(iter_n):
print(i)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
eigen = cv2.cornerEigenValsAndVecs(gray, str_sigma, 3)
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
x, y = eigen[:,:,1,0], eigen[:,:,1,1]
gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma)
gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma)
gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma)
gvv = x*x*gxx + 2*x*y*gxy + y*y*gyy
m = gvv < 0
ero = cv2.erode(img, None)
dil = cv2.dilate(img, None)
img1 = ero
img1[m] = dil[m]
img = np.uint8(img*(1.0 - blend) + img1*blend)
print('done')
return img
示例15: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLOR_BGR2GRAY [as 别名]
def main():
#IMG PATHS
imagePath = "test3.jpg"
cascPath = "cascades/haarcascade_pedestrian.xml"
pplCascade = cv2.CascadeClassifier(cascPath)
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = normalize_grayimage(gray)
pedestrians = pplCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=10,
minSize=(32,96),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
print "Found {0} ppl!".format(len(pedestrians))
#Draw a rectangle around the detected objects
for (x, y, w, h) in pedestrians:
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imwrite("saida.jpg", image)
cv2.imshow("Ppl found", image)
cv2.waitKey(0)
return 0