本文整理汇总了Python中cv2.COLORMAP_HSV属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.COLORMAP_HSV属性的具体用法?Python cv2.COLORMAP_HSV怎么用?Python cv2.COLORMAP_HSV使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.COLORMAP_HSV属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save_class_activation_on_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_HSV [as 别名]
def save_class_activation_on_image(org_img, activation_map, file_name):
"""
Saves cam activation map and activation map on the original image
Args:
org_img (PIL img): Original image
activation_map (numpy arr): activation map (grayscale) 0-255
file_name (str): File name of the exported image
"""
if not os.path.exists('../results'):
os.makedirs('../results')
# Grayscale activation map
path_to_file = os.path.join('../results', file_name+'_Cam_Grayscale.jpg')
cv2.imwrite(path_to_file, activation_map)
# Heatmap of activation map
activation_heatmap = cv2.applyColorMap(activation_map, cv2.COLORMAP_HSV)
path_to_file = os.path.join('../results', file_name+'_Cam_Heatmap.jpg')
cv2.imwrite(path_to_file, activation_heatmap)
# Heatmap on picture
org_img = cv2.resize(org_img, (224, 224))
img_with_heatmap = np.float32(activation_heatmap) + np.float32(org_img)
img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap)
path_to_file = os.path.join('../results', file_name+'_Cam_On_Image.jpg')
cv2.imwrite(path_to_file, np.uint8(255 * img_with_heatmap))
示例2: save_class_activation_on_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_HSV [as 别名]
def save_class_activation_on_image(org_img, activation_map, file_name):
"""
Saves cam activation map and activation map on the original image
Args:
org_img (PIL img): Original image
activation_map (numpy arr): activation map (grayscale) 0-255
file_name (str): File name of the exported image
"""
# Grayscale activation map
path_to_file = os.path.join('../results', file_name+'_Cam_Grayscale.jpg')
cv2.imwrite(path_to_file, activation_map)
# Heatmap of activation map
activation_heatmap = cv2.applyColorMap(activation_map, cv2.COLORMAP_HSV)
path_to_file = os.path.join('../results', file_name+'_Cam_Heatmap.jpg')
cv2.imwrite(path_to_file, activation_heatmap)
# Heatmap on picture
org_img = cv2.resize(org_img, (224, 224))
img_with_heatmap = np.float32(activation_heatmap) + np.float32(org_img)
img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap)
path_to_file = os.path.join('../results', file_name+'_Cam_On_Image.jpg')
cv2.imwrite(path_to_file, np.uint8(255 * img_with_heatmap))
示例3: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_HSV [as 别名]
def __init__(self, parent, capture, fps=24):
wx.Panel.__init__(self, parent)
self.capture = capture2
ret, frame = self.capture.read()
sal = mr_sal.saliency(frame)
sal = cv2.resize(sal,(320,240)).astype(sp.uint8)
sal = cv2.normalize(sal, None, 0, 255, cv2.NORM_MINMAX)
outsal = cv2.applyColorMap(sal,cv2.COLORMAP_HSV)
self.bmp = wx.BitmapFromBuffer(320,240, outsal.astype(sp.uint8))
self.timer = wx.Timer(self)
self.timer.Start(1000./fps)
self.Bind(wx.EVT_PAINT, self.OnPaint)
self.Bind(wx.EVT_TIMER, self.NextFrame)
示例4: apply_heat_map_uchar
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_HSV [as 别名]
def apply_heat_map_uchar(values, mini=None, maxi=None):
"""Color values by their intensity.
Applies an HSV color map.
Parameters
----------
values: ndarray
The N dimensional array of intensities (ndim=1).
mini : Optional[float]
The intensity value of minimum saturation (lower bound of color map).
maxi : Optional[float]
The intensity value of maximum saturation (upper bound of color map).
Returns
-------
ndarray
The Nx3 shaped array of color codes in range [0, 255]. The dtype is
np.int.
"""
if len(values) == 0:
return np.zeros((0, ), dtype=np.uint8)
mini, maxi = mini or np.min(values), maxi or np.max(values)
valrange = maxi - mini
if valrange < np.finfo(valrange).eps:
valrange = np.inf
normalized = (255. * (values - mini) / valrange).astype(np.uint8)
colors = cv2.applyColorMap(normalized, cv2.COLORMAP_HSV)
return colors.astype(np.int).reshape(-1, 3)
示例5: draw_matches
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_HSV [as 别名]
def draw_matches(self, src1, src2, drawing_type):
height = max(src1.shape[0], src2.shape[0])
width = src1.shape[1] + src2.shape[1]
output = np.zeros((height, width, 3), dtype=np.uint8)
output[0:src1.shape[0], 0:src1.shape[1]] = src1
output[0:src2.shape[0], src1.shape[1]:] = src2[:]
if drawing_type == DrawingType.ONLY_LINES:
for i in range(len(self.gms_matches)):
left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0)))
cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (0, 255, 255))
elif drawing_type == DrawingType.LINES_AND_POINTS:
for i in range(len(self.gms_matches)):
left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0)))
cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (255, 0, 0))
for i in range(len(self.gms_matches)):
left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0)))
cv2.circle(output, tuple(map(int, left)), 1, (0, 255, 255), 2)
cv2.circle(output, tuple(map(int, right)), 1, (0, 255, 0), 2)
elif drawing_type == DrawingType.COLOR_CODED_POINTS_X or drawing_type == DrawingType.COLOR_CODED_POINTS_Y or drawing_type == DrawingType.COLOR_CODED_POINTS_XpY :
_1_255 = np.expand_dims( np.array( range( 0, 256 ), dtype='uint8' ), 1 )
_colormap = cv2.applyColorMap(_1_255, cv2.COLORMAP_HSV)
for i in range(len(self.gms_matches)):
left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0)))
if drawing_type == DrawingType.COLOR_CODED_POINTS_X:
colormap_idx = int(left[0] * 256. / src1.shape[1] ) # x-gradient
if drawing_type == DrawingType.COLOR_CODED_POINTS_Y:
colormap_idx = int(left[1] * 256. / src1.shape[0] ) # y-gradient
if drawing_type == DrawingType.COLOR_CODED_POINTS_XpY:
colormap_idx = int( (left[0] - src1.shape[1]*.5 + left[1] - src1.shape[0]*.5) * 256. / (src1.shape[0]*.5 + src1.shape[1]*.5) ) # manhattan gradient
color = tuple( map(int, _colormap[ colormap_idx,0,: ]) )
cv2.circle(output, tuple(map(int, left)), 1, color, 2)
cv2.circle(output, tuple(map(int, right)), 1, color, 2)
cv2.imshow('show', output)
cv2.waitKey()
示例6: draw_matches
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_HSV [as 别名]
def draw_matches(src1, src2, kp1, kp2, matches, drawing_type):
height = max(src1.shape[0], src2.shape[0])
width = src1.shape[1] + src2.shape[1]
output = np.zeros((height, width, 3), dtype=np.uint8)
output[0:src1.shape[0], 0:src1.shape[1]] = src1
output[0:src2.shape[0], src1.shape[1]:] = src2[:]
if drawing_type == DrawingType.ONLY_LINES:
for i in range(len(matches)):
left = kp1[matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0)))
cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (0, 255, 255))
elif drawing_type == DrawingType.LINES_AND_POINTS:
for i in range(len(matches)):
left = kp1[matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0)))
cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (255, 0, 0))
for i in range(len(matches)):
left = kp1[matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0)))
cv2.circle(output, tuple(map(int, left)), 1, (0, 255, 255), 2)
cv2.circle(output, tuple(map(int, right)), 1, (0, 255, 0), 2)
elif drawing_type == DrawingType.COLOR_CODED_POINTS_X or drawing_type == DrawingType.COLOR_CODED_POINTS_Y or drawing_type == DrawingType.COLOR_CODED_POINTS_XpY:
_1_255 = np.expand_dims(np.array(range(0, 256), dtype='uint8'), 1)
_colormap = cv2.applyColorMap(_1_255, cv2.COLORMAP_HSV)
for i in range(len(matches)):
left = kp1[matches[i].queryIdx].pt
right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0)))
if drawing_type == DrawingType.COLOR_CODED_POINTS_X:
colormap_idx = int(left[0] * 256. / src1.shape[1]) # x-gradient
if drawing_type == DrawingType.COLOR_CODED_POINTS_Y:
colormap_idx = int(left[1] * 256. / src1.shape[0]) # y-gradient
if drawing_type == DrawingType.COLOR_CODED_POINTS_XpY:
colormap_idx = int((left[0] - src1.shape[1]*.5 + left[1] - src1.shape[0]*.5) * 256. / (src1.shape[0]*.5 + src1.shape[1]*.5)) # manhattan gradient
color = tuple(map(int, _colormap[colormap_idx, 0, :]))
cv2.circle(output, tuple(map(int, left)), 1, color, 2)
cv2.circle(output, tuple(map(int, right)), 1, color, 2)
return output