本文整理汇总了Python中cv2.CHAIN_APPROX_TC89_KCOS属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.CHAIN_APPROX_TC89_KCOS属性的具体用法?Python cv2.CHAIN_APPROX_TC89_KCOS怎么用?Python cv2.CHAIN_APPROX_TC89_KCOS使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.CHAIN_APPROX_TC89_KCOS属性的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: findTargets
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def findTargets(frame, mask):
# Finds contours
_, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_KCOS)
# Take each frame
# Gets the shape of video
screenHeight, screenWidth, _ = frame.shape
# Gets center of height and width
centerX = (screenWidth / 2) - .5
centerY = (screenHeight / 2) - .5
# Copies frame and stores it in image
image = frame.copy()
# Processes the contours, takes in (contours, output_image, (centerOfImage)
if len(contours) != 0:
image = findTape(contours, image, centerX, centerY)
else:
# pushes that it deosn't see vision target to network tables
networkTable.putBoolean("tapeDetected", False)
# Shows the contours overlayed on the original video
return image
# Finds the balls from the masked image and displays them on original stream + network tables
示例2: findCargo
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def findCargo(frame, mask):
# Finds contours
_, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_KCOS)
# Take each frame
# Gets the shape of video
screenHeight, screenWidth, _ = frame.shape
# Gets center of height and width
centerX = (screenWidth / 2) - .5
centerY = (screenHeight / 2) - .5
# Copies frame and stores it in image
image = frame.copy()
# Processes the contours, takes in (contours, output_image, (centerOfImage)
if len(contours) != 0:
image = findBall(contours, image, centerX, centerY)
else:
# pushes that it doesn't see cargo to network tables
networkTable.putBoolean("cargoDetected", False)
# Shows the contours overlayed on the original video
return image
# Draws Contours and finds center and yaw of orange ball
# centerX is center x coordinate of image
# centerY is center y coordinate of image
示例3: contours_hierarchy
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def contours_hierarchy(mask):
# first, find contours with cv2: it's much faster than shapely
image, contours, hierarchy = cv2.findContours(
((mask == 1) * 255).astype(np.uint8),
cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_TC89_KCOS) # cv2.CHAIN_APPROX_SIMPLE,#orig cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS
return contours, hierarchy
示例4: binarized_whatlike_filtered_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def binarized_whatlike_filtered_image(self, img):
"""
Do normalization and thresholding on the result of weighted hat-like filter image to extract line candidate
:param img: input image
:return: list of roi pair (top_roi, fv_roi) class which defined in imdb.py
"""
if img is None:
raise ValueError('Image data is invalid')
# intensity normalizing the image and thresholding thre image
image = img[:, :, 0]
inds = np.where(image[:, :] > 650)
norm_thresh_img = np.zeros(image.shape).astype(np.uint8)
norm_thresh_img[inds] = 255
# find connected component
image, contours, hierarchy = cv2.findContours(image=norm_thresh_img, mode=cv2.RETR_CCOMP,
method=cv2.CHAIN_APPROX_TC89_KCOS)
response_points = self.__find_response_points_in_contours(contours=contours, image=norm_thresh_img)
# find rotate rect of each contour and check if it fits the condition, if fits the condition then save the
# bounding rectangle of the contour
result = []
valid_contours = 0
for index, contour in enumerate(contours):
rotrect = cv2.minAreaRect(contour)
if self.__is_rrect_valid(rotrect):
# the contours is valid and can be saved
roi_contours = contour
roi_contours = np.reshape(roi_contours, newshape=(roi_contours.shape[0], roi_contours.shape[2]))
roi_index = valid_contours
valid_contours += 1
top_roi_db = imdb.Roidb(roi_index=roi_index, roi_contours=roi_contours,
roi_response_points=response_points[index]) # type:
fv_roi_db, roi_is_valid = self.__map_roi_to_front_view(roidb=top_roi_db)
if roi_is_valid:
result.append((top_roi_db, fv_roi_db))
return result, norm_thresh_img
示例5: __extract_line_from_filtered_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def __extract_line_from_filtered_image(img):
"""
Do normalization and thresholding on the result of weighted hat-like filter image to extract line candidate
:param img:input image
:return:rotate rect list []
"""
image = img[:, :, 0]
inds = np.where(image[:, :] > 300)
norm_thresh_image = np.zeros(image.shape).astype(np.uint8)
norm_thresh_image[inds] = 255
# find connected component
image, contours, hierarchy = cv2.findContours(image=norm_thresh_image, mode=cv2.RETR_CCOMP,
method=cv2.CHAIN_APPROX_TC89_KCOS)
# find rotate rect of each contour and check if it fits the condition, if fits the condition then save the
# bounding rectangle of the contour
rotate_rect_list = []
bounding_rect_list = []
for i in range(len(contours)):
contour = contours[i]
rotrect = cv2.minAreaRect(contour)
if RoiExtractor.__is_rrect_valid(rotrect):
rotate_rect_list.append(rotrect)
bnd_rect = cv2.boundingRect(contour)
bounding_rect_list.append(bnd_rect)
result = {
'rotate_rect_list': rotate_rect_list,
'bounding_rect_list': bounding_rect_list
}
return result
示例6: __init__
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def __init__(self, img, **kwargs):
contours, hierarchy = _find_contours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_KCOS, **kwargs)
self.hierarchy = hierarchy
self.contours = contours
self.imgshape = img.shape
示例7: compute_missing_cell_contours
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def compute_missing_cell_contours(self, missing_cells_mask):
contx, _ = _find_contours(missing_cells_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_TC89_KCOS)
return contx
示例8: extractPiece
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def extractPiece(tile, margin=0.05):
imgs = [tile]
w, h, _ = tile.shape
im_gray = cv2.cvtColor(tile, cv2.COLOR_BGR2GRAY)
imgs.append(cv2.cvtColor(im_gray, cv2.COLOR_GRAY2BGR))
# im_gray = im_gray[(h*margin):(h*(1-margin)),
# (w*margin):(w*(1-margin))]
# imgs.append(cv2.cvtColor(im_gray, cv2.COLOR_GRAY2BGR))
# im_gray = cv2.equalizeHist(im_gray)
im_gray = cv2.medianBlur(im_gray, 3)
imgs.append(cv2.cvtColor(im_gray, cv2.COLOR_GRAY2BGR))
bright = np.mean(im_gray)
im_bw = im_gray
im_bw[np.where(im_gray < bright)] = 0
im_bw[np.where(im_gray >= bright)] = 255
imgs.append(cv2.cvtColor(im_bw, cv2.COLOR_GRAY2BGR))
if np.mean(im_bw) < 128:
im_bw = 255 - im_bw
imgs.append(cv2.cvtColor(im_bw, cv2.COLOR_GRAY2BGR))
#_, im_bw = cv2.threshold(im_gray, 50, 250, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
#im_bw = cv2.Canny(im_bw, 0,255, apertureSize=5)
contours,hierarchy = cv2.findContours(im_bw.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
hulls = [cv2.convexHull(c) for c in contours]
ids = ignoreContours(im_bw, hulls, max_area_percentage=0.75, min_area_percentage=0.2)
im_bw = cv2.cvtColor(im_bw, cv2.COLOR_GRAY2BGR)
tmp = im_bw.copy()
for i in ids:
c = np.squeeze(hulls[i], 1)
drawContour(tmp, c, randomColor(), thickness=1)
imgs.append(tmp)
return imgs
示例9: extractBoards
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CHAIN_APPROX_TC89_KCOS [as 别名]
def extractBoards(img, w, h):
"""Extracts all boards from an image. This function applies perspective correction.
:param img: source image
:param w: output width
:param h: output height
:returns: a list the extracted board images
"""
im_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
## Doc ##
#writeDocumentationImage(im_gray, "gray")
## Doc ##
(thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
## Doc ##
#writeDocumentationImage(im_bw, "bw")
## Doc ##
contours,hierarchy = cv2.findContours(im_bw, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
## Doc ##
#doc_im_contour = cv2.cvtColor(im_gray, cv2.COLOR_GRAY2BGR)
#for c in contours:
# c = np.squeeze(c,1)
# drawContour(doc_im_contour, c, randomColor())
#writeDocumentationImage(doc_im_contour, "contours")
#doc_im_perspective = cv2.cvtColor(im_gray, cv2.COLOR_GRAY2BGR)
#doc_im_contour = cv2.cvtColor(im_gray, cv2.COLOR_GRAY2BGR)
## Doc ##
contour_ids = ignoreContours(im_bw, contours, hierarchy)
boards = []
for i in contour_ids:
c = contours[i]
c = np.squeeze(c,1)
## Doc ##
#color = randomColor()
#drawContour(doc_im_contour, c, color)
## Doc ##
perspective = getPerspective(img, c)
if perspective is not None:
b = extractPerspective(img, perspective, w, h)
boards.append(b)
## Doc ##
#drawPerspective(doc_im_perspective, perspective)
## Doc ##
## Doc ##
#writeDocumentationImage(boards[-1], "extracted")
#writeDocumentationImage(doc_im_contour, "contours_filtered")
#writeDocumentationImage(doc_im_perspective, "perspective")
## Doc ##
return boards