当前位置: 首页>>代码示例>>Python>>正文


Python cv2.BORDER_REFLECT属性代码示例

本文整理汇总了Python中cv2.BORDER_REFLECT属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.BORDER_REFLECT属性的具体用法?Python cv2.BORDER_REFLECT怎么用?Python cv2.BORDER_REFLECT使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在cv2的用法示例。


在下文中一共展示了cv2.BORDER_REFLECT属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _elastic

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def _elastic(image, p, alpha=None, sigma=None, random_state=None):
    """Elastic deformation of images as described in [Simard2003]_ (with modifications).
    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
         Convolutional Neural Networks applied to Visual Document Analysis", in
         Proc. of the International Conference on Document Analysis and
         Recognition, 2003.
     Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5
     From: 
     https://www.kaggle.com/bguberfain/elastic-transform-for-data-augmentation
    """
    if random.random() > p:
        return image
    if alpha == None:
        alpha = image.shape[0] * random.uniform(0.5,2)
    if sigma == None:
        sigma = int(image.shape[0] * random.uniform(0.5,1))
    if random_state is None:
        random_state = np.random.RandomState(None)

    shape = image.shape[:2]
    
    dx, dy = [cv2.GaussianBlur((random_state.rand(*shape) * 2 - 1) * alpha, (sigma|1, sigma|1), 0) for _ in range(2)]
    x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
    x, y = np.clip(x+dx, 0, shape[1]-1).astype(np.float32), np.clip(y+dy, 0, shape[0]-1).astype(np.float32)
    return cv2.remap(image, x, y, interpolation=cv2.INTER_LINEAR, borderValue= 0, borderMode=cv2.BORDER_REFLECT) 
开发者ID:ShuangXieIrene,项目名称:ssds.pytorch,代码行数:27,代码来源:data_augment.py

示例2: get_mag_avg

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def get_mag_avg(img):

    img = np.sqrt(img)

    kernels = get_kernels()

    mag = np.zeros(img.shape, dtype='float32')

    for kernel_filter in kernels:

        gx = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_REFLECT)
        gy = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_REFLECT)

        mag += cv2.magnitude(gx, gy)

    mag /= len(kernels)

    return np.uint8(mag) 
开发者ID:jgrss,项目名称:spfeas,代码行数:20,代码来源:spfunctions.py

示例3: conv_tri

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def conv_tri(src, radius):
    """
    Image convolution with a triangle filter.

    :param src: input image
    :param radius: gradient normalization radius
    :return: convolution result
    """

    if radius == 0:
        return src
    elif radius <= 1:
        p = 12.0 / radius / (radius + 2) - 2
        kernel = N.asarray([1, p, 1], dtype=N.float64) / (p + 2)
        return cv2.sepFilter2D(src, ddepth=-1, kernelX=kernel, kernelY=kernel,
                               borderType=cv2.BORDER_REFLECT)
    else:
        radius = int(radius)
        kernel = range(1, radius + 1) + [radius + 1] + range(radius, 0, -1)
        kernel = N.asarray(kernel, dtype=N.float64) / (radius + 1) ** 2
        return cv2.sepFilter2D(src, ddepth=-1, kernelX=kernel, kernelY=kernel,
                               borderType=cv2.BORDER_REFLECT) 
开发者ID:ArtanisCV,项目名称:StructuredForests,代码行数:24,代码来源:utils.py

示例4: predict8tta

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def predict8tta(model, batch, sigmoid):
    ret = []
    for cls in TTA:
        ret.append(cls(sigmoid)(model, batch))
    scale_tta = False
    if scale_tta:
        for scale in [0.8, 1.25]:
            data = np.moveaxis(np.squeeze(batch.numpy()[0]), 0, -1)
            srows, scols = data.shape[:2]
            data = cv2.resize(data, (0, 0), fx=scale, fy=scale)
            rows, cols = data.shape[:2]
            data = cv2.copyMakeBorder(data, 0, (32-rows%32), 0, (32-cols%32), cv2.BORDER_REFLECT)
            data = np.expand_dims(np.moveaxis(data, -1, 0), 0)
            data = torch.from_numpy(data)
            for cls in TTA:
                r = (cls(sigmoid)(model, data))
                r = np.moveaxis(np.squeeze(r), 0, -1)
                r = r[:rows, :cols, ...]
                r = cv2.resize(r, (scols, srows))
                r = np.expand_dims(np.moveaxis(r, -1, 0), 0)
                ret.append(r)
    return np.moveaxis(np.mean(ret, axis=0), 1, -1) 
开发者ID:selimsef,项目名称:dsb2018_topcoders,代码行数:24,代码来源:eval.py

示例5: random_translate_img

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def random_translate_img(img, xy_range, border_mode="constant"):
    if random.random() > xy_range.chance:
        return img
    import cv2
    if not isinstance(img, list):
        img = [img]

    org_height, org_width = img[0].shape[:2]
    translate_x = random.randint(xy_range.x_min, xy_range.x_max)
    translate_y = random.randint(xy_range.y_min, xy_range.y_max)
    trans_matrix = numpy.float32([[1, 0, translate_x], [0, 1, translate_y]])

    border_const = cv2.BORDER_CONSTANT
    if border_mode == "reflect":
        border_const = cv2.BORDER_REFLECT

    res = []
    for img_inst in img:
        img_inst = cv2.warpAffine(img_inst, trans_matrix, (org_width, org_height), borderMode=border_const)
        res.append(img_inst)
    if len(res) == 1:
        res = res[0]
    xy_range.last_x = translate_x
    xy_range.last_y = translate_y
    return res 
开发者ID:juliandewit,项目名称:kaggle_ndsb2017,代码行数:27,代码来源:step2_train_mass_segmenter.py

示例6: affine

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def affine(img, angle, translate, scale, shear, interpolation=cv2.INTER_LINEAR, mode=cv2.BORDER_CONSTANT, fillcolor=0):
    """Apply affine transformation on the image keeping image center invariant
    Args:
        img (numpy ndarray): numpy ndarray to be transformed.
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
        shear (float): shear angle value in degrees between -180 to 180, clockwise direction.
        interpolation (``cv2.INTER_NEAREST` or ``cv2.INTER_LINEAR`` or ``cv2.INTER_AREA``, ``cv2.INTER_CUBIC``):
            An optional resampling filter.
            See `filters`_ for more information.
            If omitted, it is set to ``cv2.INTER_CUBIC``, for bicubic interpolation.
        mode (``cv2.BORDER_CONSTANT`` or ``cv2.BORDER_REPLICATE`` or ``cv2.BORDER_REFLECT`` or ``cv2.BORDER_REFLECT_101``)
            Method for filling in border regions. 
            Defaults to cv2.BORDER_CONSTANT, meaning areas outside the image are filled with a value (val, default 0)
        val (int): Optional fill color for the area outside the transform in the output image. Default: 0
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be numpy Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.shape[0:2]
    center = (img.shape[1] * 0.5 + 0.5, img.shape[0] * 0.5 + 0.5)
    matrix = _get_affine_matrix(center, angle, translate, scale, shear)
    
    if img.shape[2]==1:
        return cv2.warpAffine(img, matrix, output_size[::-1],interpolation, borderMode=mode, borderValue=fillcolor)[:,:,np.newaxis]
    else:
        return cv2.warpAffine(img, matrix, output_size[::-1],interpolation, borderMode=mode, borderValue=fillcolor) 
开发者ID:jbohnslav,项目名称:opencv_transforms,代码行数:35,代码来源:functional.py

示例7: affine

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def affine(img, angle, translate, scale, shear, interpolation=cv2.INTER_LINEAR, mode=cv2.BORDER_CONSTANT, fillcolor=0):
    """Apply affine transformation on the image keeping image center invariant
    Args:
        img (numpy ndarray): numpy ndarray to be transformed.
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
        shear (float): shear angle value in degrees between -180 to 180, clockwise direction.
        interpolation (``cv2.INTER_NEAREST` or ``cv2.INTER_LINEAR`` or ``cv2.INTER_AREA``, ``cv2.INTER_CUBIC``):
            An optional resampling filter.
            See `filters`_ for more information.
            If omitted, it is set to ``cv2.INTER_LINEAR``, for bilinear interpolation.
        mode (``cv2.BORDER_CONSTANT`` or ``cv2.BORDER_REPLICATE`` or ``cv2.BORDER_REFLECT`` or ``cv2.BORDER_REFLECT_101``)
            Method for filling in border regions.
            Defaults to cv2.BORDER_CONSTANT, meaning areas outside the image are filled with a value (val, default 0)
        val (int): Optional fill color for the area outside the transform in the output image. Default: 0
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be numpy Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.shape[0:2]
    center = (img.shape[1] * 0.5 + 0.5, img.shape[0] * 0.5 + 0.5)
    matrix = _get_affine_matrix(center, angle, translate, scale, shear)

    if img.shape[2]==1:
        return cv2.warpAffine(img, matrix, output_size[::-1],interpolation, borderMode=mode, borderValue=fillcolor)[:,:,np.newaxis]
    else:
        return cv2.warpAffine(img, matrix, output_size[::-1],interpolation, borderMode=mode, borderValue=fillcolor) 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:35,代码来源:opencv_functional.py

示例8: rnd_warp

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def rnd_warp(a):
    h, w = a.shape[:2]
    T = np.zeros((2, 3))
    coef = 0.2
    ang = (np.random.rand()-0.5)*coef
    c, s = np.cos(ang), np.sin(ang)
    T[:2, :2] = [[c,-s], [s, c]]
    T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef
    c = (w/2, h/2)
    T[:,2] = c - np.dot(T[:2, :2], c)
    return cv2.warpAffine(a, T, (w, h), borderMode = cv2.BORDER_REFLECT) 
开发者ID:makelove,项目名称:OpenCV-Python-Tutorial,代码行数:13,代码来源:mosse.py

示例9: border_frame

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def border_frame(frame, border_size, border_type):
    """Convenience wrapper of cv2.copyMakeBorder for how vidstab applies borders

    :param frame: frame to apply border to
    :param border_size: int border size in number of pixels
    :param border_type: one of the following ['black', 'reflect', 'replicate']
    :return: bordered version of frame with alpha layer for frame overlay options
    """
    border_modes = {'black': cv2.BORDER_CONSTANT,
                    'reflect': cv2.BORDER_REFLECT,
                    'replicate': cv2.BORDER_REPLICATE}
    border_mode = border_modes[border_type]

    bordered_frame_image = cv2.copyMakeBorder(frame.image,
                                              top=border_size,
                                              bottom=border_size,
                                              left=border_size,
                                              right=border_size,
                                              borderType=border_mode,
                                              value=[0, 0, 0])

    bordered_frame = Frame(bordered_frame_image, color_format=frame.color_format)

    alpha_bordered_frame = bordered_frame.bgra_image
    alpha_bordered_frame[:, :, 3] = 0
    h, w = frame.image.shape[:2]
    alpha_bordered_frame[border_size:border_size + h, border_size:border_size + w, 3] = 255

    return alpha_bordered_frame, border_mode 
开发者ID:AdamSpannbauer,项目名称:python_video_stab,代码行数:31,代码来源:vidstab_utils.py

示例10: __call__

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def __call__(self, image, *args):
        size=self.size
        if self.type=='constant':
            image = cv2.copyMakeBorder(image, size, size, size, size, cv2.BORDER_CONSTANT, value=self.constant_color)
        elif self.type=='reflect':
            image = cv2.copyMakeBorder(image, size, size, size, size, cv2.BORDER_REFLECT)
        elif self.type=='replicate':
            image = cv2.copyMakeBorder(image, size, size, size, size, cv2.BORDER_REPLICATE)

        if len(args):
            return (image, *args)
        else:
            return image 
开发者ID:xxradon,项目名称:PytorchToCaffe,代码行数:15,代码来源:augmentations.py

示例11: random_rotate_with_mask

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def random_rotate_with_mask(image, mask, max_angle):
    cols = image.shape[1]
    rows = image.shape[0]

    angle = random.uniform(-max_angle, max_angle)
    M = cv2.getRotationMatrix2D((cols // 2, rows // 2), angle, 1)
    dst = cv2.warpAffine(image, M, (cols, rows), borderMode=cv2.BORDER_REFLECT)
    dst_msk = cv2.warpAffine(mask, M, (cols, rows), borderMode=cv2.BORDER_REFLECT)
    return dst, dst_msk 
开发者ID:topcoderinc,项目名称:Urban3d,代码行数:11,代码来源:a00_augmentation_functions.py

示例12: get_features

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def get_features(self, src, smp_loc):
        bottom, right = (4 - src.shape[0] % 4) % 4, (4 - src.shape[1] % 4) % 4
        src = cv2.copyMakeBorder(src, 0, bottom, 0, right,
                                 borderType=cv2.BORDER_REFLECT)

        reg_ch, ss_ch = self.get_shrunk_channels(src)
        smp_loc = self.get_shrunk_loc(smp_loc)

        reg_ftr = self.get_reg_ftr(reg_ch, smp_loc)
        ss_ftr = self.get_ss_ftr(ss_ch, smp_loc)

        return reg_ftr, ss_ftr 
开发者ID:ArtanisCV,项目名称:StructuredForests,代码行数:14,代码来源:BaseStructuredForests.py

示例13: _random_warp

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def _random_warp(self, img):
        h, w = img.shape[:2]
        T = np.zeros((2, 3))
        coef = 0.2
        ang = (np.random.rand() - 0.5) * coef
        c, s = np.cos(ang), np.sin(ang)
        T[:2, :2] = [[c, -s], [s, c]]
        T[:2, :2] += (np.random.rand(2, 2) - 0.5) * coef
        c = (w / 2, h / 2)
        T[:, 2] = c - np.dot(T[:2, :2], c)

        return cv2.warpAffine(img, T, (w, h), borderMode=cv2.BORDER_REFLECT) 
开发者ID:huanglianghua,项目名称:open-vot,代码行数:14,代码来源:mosse.py

示例14: reflect_border

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def reflect_border(self, image, b=12):
        return cv2.copyMakeBorder(image, b, b, b, b, cv2.BORDER_REFLECT) 
开发者ID:asanakoy,项目名称:kaggle_carvana_segmentation,代码行数:4,代码来源:abstract_dataset.py

示例15: finalyze

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import BORDER_REFLECT [as 别名]
def finalyze(self, data):
        rows, cols = data.shape[:2]
        return cv2.copyMakeBorder(data, 0, (32-rows%32), 0, (32-cols%32), cv2.BORDER_REFLECT) 
开发者ID:selimsef,项目名称:dsb2018_topcoders,代码行数:5,代码来源:bowl_train.py


注:本文中的cv2.BORDER_REFLECT属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。