本文整理汇总了Python中cv2.ADAPTIVE_THRESH_MEAN_C属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.ADAPTIVE_THRESH_MEAN_C属性的具体用法?Python cv2.ADAPTIVE_THRESH_MEAN_C怎么用?Python cv2.ADAPTIVE_THRESH_MEAN_C使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.ADAPTIVE_THRESH_MEAN_C属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getSignature
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def getSignature(img):
imgSize = np.shape(img)
gImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Adaptive Thresholding requires the blocksize to be odd and bigger than 1
blockSize = 1 / 8 * imgSize[0] / 2 * 2 + 1
if blockSize <= 1:
blockSize = imgSize[0] / 2 * 2 + 1
const = 10
mask = cv2.adaptiveThreshold(gImg, maxValue = 255, adaptiveMethod = cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType = cv2.THRESH_BINARY, blockSize = blockSize, C = const)
rmask = cv2.bitwise_not(mask)
return (cv2.bitwise_and(img, img, mask=rmask), rmask)
# First Prompt
示例2: read_file
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def read_file(fname):
image = cv2.imread(fname,0)
image = cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
# cv2.namedWindow('image', cv2.WINDOW_NORMAL)
# cv2.imshow('image',image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# image = cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
# cv2.imwrite("/home/ggdhines/temp.jpg",image)
# assert False
# _,image = cv2.threshold(image,200,255,cv2.THRESH_BINARY)
# image = 255 - image
# image = image > 0
image = image.astype(np.float)
return image
示例3: adaptiveThreshold
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def adaptiveThreshold(plates):
for i, plate in enumerate(plates):
img = cv2.imread(plate)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
cv2.imshow('gray', gray)
ret, thresh = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY)
# cv2.imshow('thresh', thresh)
threshMean = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 10)
# cv2.imshow('threshMean', threshMean)
threshGauss = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 51, 27)
cv2.imshow('threshGauss', threshGauss)
cv2.imwrite("processed\\plate{}.png".format(i), threshGauss)
cv2.waitKey(0)
示例4: get_name
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def get_name(img):
# cv2.imshow("method3", img)
# cv2.waitKey()
print('name')
_, _, red = cv2.split(img) #split 会自动将UMat转换回Mat
red = cv2.UMat(red)
red = hist_equal(red)
red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 151, 50)
# red = cv2.medianBlur(red, 3)
red = img_resize(red, 150)
img = img_resize(img, 150)
# showimg(red)
# cv2.imwrite('name.png', red)
# img2 = Image.open('address.png')
# img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
#return get_result_vary_length(red, 'chi_sim', img, '-psm 7')
return get_result_vary_length(red, 'chi_sim', img, '--psm 7')
# return punc_filter(pytesseract.image_to_string(img, lang='chi_sim', config='-psm 13').replace(" ",""))
示例5: gradient_and_binary
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def gradient_and_binary(img_blurred, image_name='1.jpg', save_path='./'): # 将灰度图二值化,后面两个参数调试用
"""
求取梯度,二值化
:param img_blurred: 滤波后的图片
:param image_name: 图片名,测试用
:param save_path: 保存路径,测试用
:return: 二值化后的图片
"""
gradX = cv2.Sobel(img_blurred, ddepth=cv2.CV_32F, dx=1, dy=0)
gradY = cv2.Sobel(img_blurred, ddepth=cv2.CV_32F, dx=0, dy=1)
img_gradient = cv2.subtract(gradX, gradY)
img_gradient = cv2.convertScaleAbs(img_gradient) # sobel算子,计算梯度, 也可以用canny算子替代
# 这里改进成自适应阈值,貌似没用
img_thresh = cv2.adaptiveThreshold(img_gradient, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, -3)
# cv2.imwrite(os.path.join(save_path, img_name + '_binary.jpg'), img_thresh) # 二值化 阈值未调整好
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
img_closed = cv2.morphologyEx(img_thresh, cv2.MORPH_CLOSE, kernel)
img_closed = cv2.morphologyEx(img_closed, cv2.MORPH_OPEN, kernel)
img_closed = cv2.erode(img_closed, None, iterations=9)
img_closed = cv2.dilate(img_closed, None, iterations=9) # 腐蚀膨胀
# 这里调整了kernel大小(减小),腐蚀膨胀次数后(增大),出错的概率大幅减小
return img_closed
示例6: update_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def update_image(image_id, category_id = 0, image_filenames=[], enable_vis=True, enable_marker_dump=False):
try:
global contours, hierarchy, img, gray, g_image_filenames
if len(image_filenames) > 0:
g_image_filenames=image_filenames
img=cv.imread(g_image_filenames[image_id])
# print(g_image_filenames[image_id])
cv.setTrackbarPos('image', 'marker', image_id)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
gray[np.where(gray <= [3])] = [187]
gray = cv.medianBlur(gray, 11)
if enable_vis:
cv.imshow('gray', gray)
if CANNY_MODE:
thrs1 = cv.getTrackbarPos('thrs1', 'marker')
thrs2 = cv.getTrackbarPos('thrs2', 'marker')
bin = cv.Canny(gray, thrs1, thrs2, apertureSize=5)
else:
bin = cv.adaptiveThreshold(
gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 31, 10)
if enable_vis:
cv.imshow('bin', bin)
_, contours0, hierarchy = cv.findContours(
bin.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
contours = [cnt for cnt in contours0 if cv.contourArea(cnt) > 200]
if enable_vis:
cv.imshow('image', img)
update_contour(category_id, image_id, enable_vis, enable_marker_dump)
except Exception:
import traceback
traceback.print_exc()
raise
示例7: extract_img_markers
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def extract_img_markers(img, workspace_ratio=1.0):
"""
Extract working area from an image thanks to 4 Niryo's markers
:param img: OpenCV image which contain 4 Niryo's markers
:param workspace_ratio: Ratio between the width and the height of the area represented by the markers
:return: extracted and warped working area image
"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_thresh = cv2.adaptiveThreshold(gray, maxValue=255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,
thresholdType=cv2.THRESH_BINARY, blockSize=15, C=25)
list_good_candidates = find_markers_from_img_thresh(img_thresh)
if not list_good_candidates or len(list_good_candidates) > 6:
return None
if len(list_good_candidates) == 4:
list_good_candidates = sort_markers_detection(list_good_candidates)
else:
list_good_candidates = complicated_sort_markers(list_good_candidates, workspace_ratio=workspace_ratio)
if list_good_candidates is None:
return None
im_cut = extract_sub_img(img, list_good_candidates, ratio_w_h=workspace_ratio)
return im_cut
示例8: draw_markers
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def draw_markers(img, workspace_ratio=1.0):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_thresh = cv2.adaptiveThreshold(gray, maxValue=255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,
thresholdType=cv2.THRESH_BINARY, blockSize=15, C=32)
list_good_candidates = find_markers_from_img_thresh(img_thresh)
if not list_good_candidates:
return False, img
im_draw = img.copy()
for marker in list_good_candidates:
cx, cy = marker.get_center()
radius = marker.get_radius()
cv2.circle(im_draw, (cx, cy), radius, (0, 0, 255), 2)
if len(list_good_candidates) > 6:
return False, im_draw
if len(list_good_candidates) == 4:
list_good_candidates = sort_markers_detection(list_good_candidates)
else:
list_good_candidates = complicated_sort_markers(list_good_candidates, workspace_ratio=workspace_ratio)
if list_good_candidates is None:
return False, im_draw
for i, marker in enumerate(list_good_candidates[:4]):
cx, cy = marker.get_center()
radius = marker.get_radius()
cv2.circle(im_draw, (cx, cy), radius, (0, 200, 0), 2)
cv2.putText(im_draw, "{}".format(i + 1),
(cx + 5, cy - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 0), 3)
cv2.putText(im_draw, "{}".format(i + 1),
(cx + 5, cy - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 200, 0), 2)
return True, im_draw
示例9: preprocess_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def preprocess_image(self):
gray = self.image
#Applying Gaussian Blur to smooth out the noise
gray = cv2.GaussianBlur(gray, (11, 11), 0)
try:
os.remove("StagesImages/1.jpg")
except:
pass
cv2.imwrite("StagesImages/1.jpg", gray)
# Applying thresholding using adaptive Gaussian|Mean thresholding
gray = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C | cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 2)
try:
os.remove("StagesImages/2.jpg")
except:
pass
cv2.imwrite("StagesImages/2.jpg", gray)
#Inverting the image
gray = cv2.bitwise_not(gray)
try:
os.remove("StagesImages/3.jpg")
except:
pass
cv2.imwrite("StagesImages/3.jpg", gray)
#Dilating the image to fill up the "cracks" in lines
kernel = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], np.uint8)
gray = cv2.dilate(gray, kernel)
self.image = gray
try:
os.remove("StagesImages/4.jpg")
except:
pass
cv2.imwrite("StagesImages/4.jpg", gray)
示例10: binarization
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def binarization(image, block_size=5, C=10):
"""
convert input image to binary image
cv2.adaptiveThreshold is used, for detailed information, refer to opencv docs
:param image:
:return:
"""
if image.ndim == 3:
image_grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
image_grayscale = image
binary_image = cv2.adaptiveThreshold(image_grayscale, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, block_size, C)
return binary_image
示例11: thresholdify
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def thresholdify(self, img):
img = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 3)
return 255 - img
示例12: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def main():
const = 2
block_size = 51
imagePath = "../data/sudoku.png"
image = cv2.imread(imagePath, 0)
cv2.imshow("Orignal Image", image)
mean_thresh = \
cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, block_size, const)
gaussian_thresh = \
cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, block_size, const)
images = [image, mean_thresh, gaussian_thresh]
titles = ["Orignals", "Mean", "Gaussian"]
cv2.imshow("Mean Image", mean_thresh)
cv2.imshow("Gaussian Image", gaussian_thresh)
for i in range(3):
plt.subplot(3, 1, i + 1)
plt.imshow(images[i], cmap='gray')
plt.title(titles[i])
plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()
示例13: mean
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def mean(gray_img, max_value, object_type="light"):
"""Creates a binary image from a grayscale image based on the mean adaptive threshold method.
Inputs:
gray_img = Grayscale image data
max_value = value to apply above threshold (usually 255 = white)
object_type = "light" or "dark" (default: "light")
- If object is lighter than the background then standard thresholding is done
- If object is darker than the background then inverse thresholding is done
Returns:
bin_img = Thresholded, binary image
:param gray_img: numpy.ndarray
:param max_value: int
:param object_type: str
:return bin_img: numpy.ndarray
"""
# Set the threshold method
threshold_method = ""
if object_type.upper() == "LIGHT":
threshold_method = cv2.THRESH_BINARY
elif object_type.upper() == "DARK":
threshold_method = cv2.THRESH_BINARY_INV
else:
fatal_error('Object type ' + str(object_type) + ' is not "light" or "dark"!')
params.device += 1
bin_img = _call_adaptive_threshold(gray_img, max_value, cv2.ADAPTIVE_THRESH_MEAN_C, threshold_method,
"_mean_threshold_")
return bin_img
# Otsu autothreshold
示例14: processing
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def processing(self, img):
super().processing(img)
print("真正的核心算法:边缘提取算法")
newImg = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 10)
return newImg
示例15: remove_noise_and_smooth
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import ADAPTIVE_THRESH_MEAN_C [as 别名]
def remove_noise_and_smooth(file_name):
logging.info('Removing noise and smoothening image')
img = cv2.imread(file_name, 0)
filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3)
kernel = np.ones((1, 1), np.uint8)
opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
img = image_smoothening(img)
or_image = cv2.bitwise_or(img, closing)
return or_image