本文整理汇总了Python中cv.IPL_DEPTH_8U属性的典型用法代码示例。如果您正苦于以下问题:Python cv.IPL_DEPTH_8U属性的具体用法?Python cv.IPL_DEPTH_8U怎么用?Python cv.IPL_DEPTH_8U使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv
的用法示例。
在下文中一共展示了cv.IPL_DEPTH_8U属性的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pretty_depth_cv
# 需要导入模块: import cv [as 别名]
# 或者: from cv import IPL_DEPTH_8U [as 别名]
def pretty_depth_cv(depth):
"""Converts depth into a 'nicer' format for display
This is abstracted to allow for experimentation with normalization
Args:
depth: A numpy array with 2 bytes per pixel
Returns:
An opencv image who's datatype is unspecified
"""
import cv
depth = pretty_depth(depth)
image = cv.CreateImageHeader((depth.shape[1], depth.shape[0]),
cv.IPL_DEPTH_8U,
1)
cv.SetData(image, depth.tostring(),
depth.dtype.itemsize * depth.shape[1])
return image
示例2: video_cv
# 需要导入模块: import cv [as 别名]
# 或者: from cv import IPL_DEPTH_8U [as 别名]
def video_cv(video):
"""Converts video into a BGR format for opencv
This is abstracted out to allow for experimentation
Args:
video: A numpy array with 1 byte per pixel, 3 channels RGB
Returns:
An opencv image who's datatype is 1 byte, 3 channel BGR
"""
import cv
video = video[:, :, ::-1] # RGB -> BGR
image = cv.CreateImageHeader((video.shape[1], video.shape[0]),
cv.IPL_DEPTH_8U,
3)
cv.SetData(image, video.tostring(),
video.dtype.itemsize * 3 * video.shape[1])
return image
示例3: detectFaces
# 需要导入模块: import cv [as 别名]
# 或者: from cv import IPL_DEPTH_8U [as 别名]
def detectFaces(im):
# This function takes a PIL image and finds the patterns defined in the
# haarcascade function modified from: http://www.lucaamore.com/?p=638
# Convert a PIL image to a greyscale cv image
# from: http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
im = im.convert('L')
cv_im = cv.CreateImageHeader(im.size, cv.IPL_DEPTH_8U, 1)
cv.SetData(cv_im, im.tobytes(), im.size[0])
# variables
min_size = (20, 20)
haar_scale = 1.1
min_neighbors = 3
haar_flags = 0
# Equalize the histogram
cv.EqualizeHist(cv_im, cv_im)
# Detect the faces
faces = cv.HaarDetectObjects(
cv_im, faceCascade, cv.CreateMemStorage(0),
haar_scale, min_neighbors, haar_flags, min_size
)
return faces
示例4: process_file
# 需要导入模块: import cv [as 别名]
# 或者: from cv import IPL_DEPTH_8U [as 别名]
def process_file(filenameIN, WIDTH = 31, HEIGHT = 31):
print "processing file: "+ filenameIN
if not (os.path.exists(filenameIN)):
print "file not found. Aborting."
return
else :
srcImg = cv.LoadImage(filenameIN,0)
res = cv.CreateImage( (WIDTH, HEIGHT), cv.IPL_DEPTH_8U, 1 )
cv.Set(res, 255)
xmin=WIDTH
xmax=0
ymin=HEIGHT
ymax=0
for i in range(srcImg.width):
for j in range(srcImg.height):
#print "xmax"
#print cv.Get2D(srcImg, j, i)
if cv.Get2D(srcImg, j, i)[0] == 0.0 :
#print "xin"
if i<xmin:
xmin = i
if i>xmax:
xmax = i
if j<ymin:
ymin=j
if j>ymax:
ymax=j
offsetx = (WIDTH - (xmax-xmin))/2
offsety = (HEIGHT - (ymax-ymin))/2
#print 'WIDTH',WIDTH,"offset",offsety,offsetx
for i in range(xmax-xmin):
for j in range(ymax-ymin):
if ((offsety+j>0) and (offsety+j<res.height) and (offsetx+i>0) and (offsetx+i<res.width)):
#print "haha"
cv.Set2D(res, offsety+j, offsetx+i, cv.Get2D(srcImg, ymin+j, xmin+i))
cv.SaveImage(filenameIN, res)
示例5: disp_thresh
# 需要导入模块: import cv [as 别名]
# 或者: from cv import IPL_DEPTH_8U [as 别名]
def disp_thresh(lower, upper):
depth, timestamp = freenect.sync_get_depth()
depth = 255 * np.logical_and(depth > lower, depth < upper)
depth = depth.astype(np.uint8)
image = cv.CreateImageHeader((depth.shape[1], depth.shape[0]),
cv.IPL_DEPTH_8U,
1)
cv.SetData(image, depth.tostring(),
depth.dtype.itemsize * depth.shape[1])
cv.ShowImage('Depth', image)
cv.WaitKey(10)
示例6: show_depth
# 需要导入模块: import cv [as 别名]
# 或者: from cv import IPL_DEPTH_8U [as 别名]
def show_depth():
global threshold
global current_depth
depth, timestamp = freenect.sync_get_depth()
depth = 255 * np.logical_and(depth >= current_depth - threshold,
depth <= current_depth + threshold)
depth = depth.astype(np.uint8)
image = cv.CreateImageHeader((depth.shape[1], depth.shape[0]),
cv.IPL_DEPTH_8U,
1)
cv.SetData(image, depth.tostring(),
depth.dtype.itemsize * depth.shape[1])
cv.ShowImage('Depth', image)