本文整理汇总了Python中core.config.cfg.DEDUP_BOXES属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.DEDUP_BOXES属性的具体用法?Python cfg.DEDUP_BOXES怎么用?Python cfg.DEDUP_BOXES使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类core.config.cfg
的用法示例。
在下文中一共展示了cfg.DEDUP_BOXES属性的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_det_boxes
# 需要导入模块: from core.config import cfg [as 别名]
# 或者: from core.config.cfg import DEDUP_BOXES [as 别名]
def get_det_boxes(self, boxes, scores, box_deltas, h_and_w):
if cfg.TEST.BBOX_REG:
if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
# Remove predictions for bg class (compat with MSRA code)
box_deltas = box_deltas[:, -4:]
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
# (legacy) Optionally normalize targets by a precomputed mean and stdev
box_deltas = box_deltas.view(-1, 4) * cfg.TRAIN.BBOX_NORMALIZE_STDS \
+ cfg.TRAIN.BBOX_NORMALIZE_MEANS
pred_boxes = box_utils.bbox_transform(boxes, box_deltas, cfg.MODEL.BBOX_REG_WEIGHTS)
pred_boxes = box_utils.clip_tiled_boxes(pred_boxes, h_and_w)
if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
pred_boxes = np.tile(pred_boxes, (1, scores.shape[1]))
else:
# Simply repeat the boxes, once for each class
pred_boxes = np.tile(boxes, (1, scores.shape[1]))
if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN:
# Map scores and predictions back to the original set of boxes
scores = scores[inv_index, :]
pred_boxes = pred_boxes[inv_index, :]
return scores, pred_boxes
示例2: get_minibatch
# 需要导入模块: from core.config import cfg [as 别名]
# 或者: from core.config.cfg import DEDUP_BOXES [as 别名]
def get_minibatch(roidb, num_classes):
"""Given a roidb, construct a minibatch sampled from it."""
# We collect blobs from each image onto a list and then concat them into a
# single tensor, hence we initialize each blob to an empty list
blobs = {k: [] for k in get_minibatch_blob_names()}
# Get the input image blob
im_blob, im_scales = _get_image_blob(roidb)
assert len(im_scales) == 1, "Single batch only"
assert len(roidb) == 1, "Single batch only"
blobs['data'] = im_blob
rois_blob = np.zeros((0, 5), dtype=np.float32)
labels_blob = np.zeros((0, num_classes), dtype=np.float32)
num_images = len(roidb)
for im_i in range(num_images):
labels, im_rois = _sample_rois(roidb[im_i], num_classes)
# Add to RoIs blob
rois = _project_im_rois(im_rois, im_scales[im_i])
batch_ind = im_i * np.ones((rois.shape[0], 1))
rois_blob_this_image = np.hstack((batch_ind, rois))
if cfg.DEDUP_BOXES > 0:
v = np.array([1, 1e3, 1e6, 1e9, 1e12])
hashes = np.round(rois_blob_this_image * cfg.DEDUP_BOXES).dot(v)
_, index, inv_index = np.unique(hashes, return_index=True,
return_inverse=True)
rois_blob_this_image = rois_blob_this_image[index, :]
rois_blob = np.vstack((rois_blob, rois_blob_this_image))
# Add to labels blob
labels_blob = np.vstack((labels_blob, labels))
blobs['rois'] = rois_blob
blobs['labels'] = labels_blob
return blobs, True
示例3: im_detect_bbox
# 需要导入模块: from core.config import cfg [as 别名]
# 或者: from core.config.cfg import DEDUP_BOXES [as 别名]
def im_detect_bbox(model, im, target_scale, target_max_size, boxes=None):
"""Prepare the bbox for testing"""
inputs, im_scale = _get_blobs(im, boxes, target_scale, target_max_size)
if cfg.DEDUP_BOXES > 0:
v = np.array([1, 1e3, 1e6, 1e9, 1e12])
hashes = np.round(inputs['rois'] * cfg.DEDUP_BOXES).dot(v)
_, index, inv_index = np.unique(
hashes, return_index=True, return_inverse=True
)
inputs['rois'] = inputs['rois'][index, :]
boxes = boxes[index, :]
if cfg.PYTORCH_VERSION_LESS_THAN_040:
inputs['data'] = [Variable(torch.from_numpy(inputs['data']), volatile=True)]
inputs['rois'] = [Variable(torch.from_numpy(inputs['rois']), volatile=True)]
inputs['labels'] = [Variable(torch.from_numpy(inputs['labels']), volatile=True)]
else:
inputs['data'] = [torch.from_numpy(inputs['data'])]
inputs['rois'] = [torch.from_numpy(inputs['rois'])]
inputs['labels'] = [torch.from_numpy(inputs['labels'])]
return_dict = model(**inputs)
# cls prob (activations after softmax)
scores = return_dict['refine_score'][0].data.cpu().numpy().squeeze()
for i in range(1, cfg.REFINE_TIMES):
scores += return_dict['refine_score'][i].data.cpu().numpy().squeeze()
scores /= cfg.REFINE_TIMES
# In case there is 1 proposal
scores = scores.reshape([-1, scores.shape[-1]])
pred_boxes = boxes
if cfg.DEDUP_BOXES > 0:
# Map scores and predictions back to the original set of boxes
scores = scores[inv_index, :]
pred_boxes = pred_boxes[inv_index, :]
return scores, pred_boxes, im_scale, return_dict['blob_conv']