本文整理汇总了Python中config.NUM_CLASSES属性的典型用法代码示例。如果您正苦于以下问题:Python config.NUM_CLASSES属性的具体用法?Python config.NUM_CLASSES怎么用?Python config.NUM_CLASSES使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类config
的用法示例。
在下文中一共展示了config.NUM_CLASSES属性的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def __init__(self, layer_params):
super(ResNetTypeII, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=64,
kernel_size=(7, 7),
strides=2,
padding="same")
self.bn1 = tf.keras.layers.BatchNormalization()
self.pool1 = tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="same")
self.layer1 = make_bottleneck_layer(filter_num=64,
blocks=layer_params[0])
self.layer2 = make_bottleneck_layer(filter_num=128,
blocks=layer_params[1],
stride=2)
self.layer3 = make_bottleneck_layer(filter_num=256,
blocks=layer_params[2],
stride=2)
self.layer4 = make_bottleneck_layer(filter_num=512,
blocks=layer_params[3],
stride=2)
self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
self.fc = tf.keras.layers.Dense(units=NUM_CLASSES, activation=tf.keras.activations.softmax)
示例2: processor
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def processor(sample):
data, labels, training = sample
data = utils.augmentation(data.unsqueeze(1).float() / 255.0)
labels = torch.eye(config.NUM_CLASSES).index_select(dim=0, index=labels)
data = Variable(data)
labels = Variable(labels)
if torch.cuda.is_available():
data = data.cuda()
labels = labels.cuda()
if training:
classes, reconstructions = model(data, labels)
else:
classes, reconstructions = model(data)
loss = capsule_loss(data, labels, classes, reconstructions)
return loss, classes
示例3: __init__
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def __init__(self):
super(CapsuleNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1)
self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32,
kernel_size=9, stride=2)
self.digit_capsules = CapsuleLayer(num_capsules=config.NUM_CLASSES, num_route_nodes=32 * 6 * 6, in_channels=8,
out_channels=16)
self.decoder = nn.Sequential(
nn.Linear(16 * config.NUM_CLASSES, 512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 784),
nn.Sigmoid()
)
示例4: forward
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def forward(self, x, y=None):
x = F.relu(self.conv1(x), inplace=True)
x = self.primary_capsules(x)
x = self.digit_capsules(x).squeeze().transpose(0, 1)
classes = (x ** 2).sum(dim=-1) ** 0.5
classes = F.softmax(classes, dim=-1)
if y is None:
# In all batches, get the most active capsule.
_, max_length_indices = classes.max(dim=1)
if torch.cuda.is_available():
y = Variable(torch.eye(config.NUM_CLASSES)).cuda().index_select(dim=0, index=max_length_indices)
else:
y = Variable(torch.eye(config.NUM_CLASSES)).index_select(dim=0, index=max_length_indices)
reconstructions = self.decoder((x * y[:, :, None]).view(x.size(0), -1))
return classes, reconstructions
示例5: __init__
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def __init__(self, model_file=PATH_TO_CKPT, label_file=PATH_TO_LABELS):
logger.info('Loading model from: {}...'.format(model_file))
detection_graph = tf.Graph()
graph = tf.Graph()
with tf.Session(graph=detection_graph):
# load the graph ===
# loading a (frozen) TensorFlow model into memory
with graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(model_file, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# loading a label map
label_map = label_map_util.load_labelmap(label_file)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# set up instance variables
self.graph = graph
self.category_index = category_index
self.categories = categories
示例6: label_to_array
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def label_to_array(label):
try:
label_array = np.zeros((25, config.NUM_CLASSES))
for i in range(len(label)):
try:
label_array[i, config.CHAR_VECTOR.index(label[i])] = 1
except Exception as ex:
label_array[i, 0] = 1
return label_array
except Exception as ex:
print(label)
raise ex
示例7: __generate_all_train_batches
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def __generate_all_train_batches(self):
train_batches = []
while not self.current_train_offset + self.batch_size > self.test_offset:
old_offset = self.current_train_offset
new_offset = self.current_train_offset + self.batch_size
self.current_train_offset = new_offset
raw_batch_x, raw_batch_y, raw_batch_la, raw_batch_la_2 = zip(*self.data[old_offset:new_offset])
batch_y = np.reshape(
np.array(raw_batch_y),
(-1)
)
batch_seq_len = np.reshape(
[len(y) for y in raw_batch_y],
(-1)
)
batch_dt = np.reshape(
np.array(raw_batch_la),
(-1, 25, config.NUM_CLASSES)
)
batch_dt_2 = np.reshape(
np.array(raw_batch_la_2),
(-1, 25)
)
batch_x = np.reshape(
np.array(raw_batch_x),
(-1, self.max_image_width, 32, 1)
)
train_batches.append((batch_y, batch_seq_len, batch_dt, batch_dt_2, batch_x))
return train_batches
示例8: __generate_all_test_batches
# 需要导入模块: import config [as 别名]
# 或者: from config import NUM_CLASSES [as 别名]
def __generate_all_test_batches(self):
test_batches = []
while not self.current_test_offset + self.batch_size > self.data_len:
old_offset = self.current_test_offset
new_offset = self.current_test_offset + self.batch_size
self.current_test_offset = new_offset
raw_batch_x, raw_batch_y, raw_batch_la, _ = zip(*self.data[old_offset:new_offset])
batch_y = np.reshape(
np.array(raw_batch_y),
(-1)
)
batch_dt = np.zeros(
np.shape(
np.reshape(
np.array(raw_batch_la),
(-1, 25, config.NUM_CLASSES)
)
)
)
batch_x = np.reshape(
np.array(raw_batch_x),
(-1, self.max_image_width, 32, 1)
)
test_batches.append((batch_y, batch_dt, batch_x))
return test_batches