本文整理汇总了Python中config.LOG_DIR属性的典型用法代码示例。如果您正苦于以下问题:Python config.LOG_DIR属性的具体用法?Python config.LOG_DIR怎么用?Python config.LOG_DIR使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类config
的用法示例。
在下文中一共展示了config.LOG_DIR属性的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def main():
logname = "generate_feature_wordnet_similarity_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
#### NOTE: use data BEFORE STEMMING
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED)
# WordNet_Lch_Similarity and WordNet_Wup_Similarity are not used in final submission
generators = [
WordNet_Path_Similarity,
WordNet_Lch_Similarity,
WordNet_Wup_Similarity,
][:1]
obs_fields_list = []
target_fields_list = []
# only search_term and product_title are used in final submission
obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"][:1] )
target_fields_list.append( ["product_title", "product_description", "product_attribute"][:1] )
# double aggregation
aggregation_mode_prev = ["mean", "max", "min", "median"]
aggregation_mode = ["mean", "std", "max", "min", "median"]
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for generator in generators:
param_list = [aggregation_mode_prev, aggregation_mode]
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例2: run_lsa_ngram
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_lsa_ngram():
logname = "generate_feature_lsa_ngram_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
dfAll.drop(["product_attribute_list"], inplace=True, axis=1)
generators = [LSA_Word_Ngram, LSA_Char_Ngram]
ngrams_list = [[1,2,3], [2,3,4,5]]
ngrams_list = [[3], [4]]
# obs_fields = ["search_term", "search_term_alt", "search_term_auto_corrected", "product_title", "product_description"]
obs_fields = ["search_term", "product_title", "product_description"]
for generator,ngrams in zip(generators, ngrams_list):
for ngram in ngrams:
param_list = [ngram, config.SVD_DIM, config.SVD_N_ITER]
sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
sf.go()
示例3: run_lsa_ngram_cooc
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_lsa_ngram_cooc():
logname = "generate_feature_lsa_ngram_cooc_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
dfAll.drop(["product_attribute_list"], inplace=True, axis=1)
generators = [LSA_Word_Ngram_Cooc]
obs_ngrams = [1, 2]
target_ngrams = [1, 2]
obs_fields_list = []
target_fields_list = []
obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"][:1] )
target_fields_list.append( ["product_title", "product_description"][:1] )
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for obs_ngram in obs_ngrams:
for target_ngram in target_ngrams:
for generator in generators:
param_list = [obs_ngram, target_ngram, config.SVD_DIM, config.SVD_N_ITER]
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例4: run_lsa_ngram_pair
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_lsa_ngram_pair():
logname = "generate_feature_lsa_ngram_pair_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
dfAll.drop(["product_attribute_list"], inplace=True, axis=1)
generators = [LSA_Word_Ngram_Pair]
ngrams = [1, 2]
obs_fields_list = []
target_fields_list = []
obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"][:1] )
target_fields_list.append( ["product_title", "product_description"] )
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for ngram in ngrams:
for generator in generators:
param_list = [ngram, config.SVD_DIM, config.SVD_N_ITER]
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
# memory error (use feature_tsne.R instead)
示例5: run_lsa_ngram_cosinesim
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_lsa_ngram_cosinesim():
logname = "generate_feature_lsa_ngram_cosinesim_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
dfAll.drop(["product_attribute_list"], inplace=True, axis=1)
generators = [LSA_Word_Ngram_CosineSim, LSA_Char_Ngram_CosineSim]
ngrams_list = [[1,2,3], [2,3,4,5]]
ngrams_list = [[3], [4]]
obs_fields_list = []
target_fields_list = []
obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"][:1] )
target_fields_list.append( ["product_title", "product_description", "product_attribute"] )
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for generator,ngrams in zip(generators, ngrams_list):
for ngram in ngrams:
param_list = [ngram, config.SVD_DIM, config.SVD_N_ITER]
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例6: run_char_dist_sim
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_char_dist_sim():
logname = "generate_feature_char_dist_sim_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
dfAll.drop(["product_attribute_list"], inplace=True, axis=1)
generators = [CharDistribution_Ratio, CharDistribution_CosineSim, CharDistribution_KL]
obs_fields_list = []
target_fields_list = []
obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"][:1] )
target_fields_list.append( ["product_title", "product_description", "product_attribute"] )
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for generator in generators:
param_list = []
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例7: __init__
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def __init__(self, feature_list, feature_name, feature_suffix=".csv",
feature_level=2, meta_feature_dict={}, corr_threshold=0):
self.feature_name = feature_name
self.feature_list = feature_list
self.feature_suffix = feature_suffix
self.feature_level = feature_level
# for meta features
self.meta_feature_dict = meta_feature_dict
self.corr_threshold = corr_threshold
self.feature_names_basic = []
self.feature_names_cv = []
self.feature_names = []
self.has_basic = 1 if self.meta_feature_dict else 0
logname = "feature_combiner_%s_%s.log"%(feature_name, time_utils._timestamp())
self.logger = logging_utils._get_logger(config.LOG_DIR, logname)
if self.feature_level == 2:
self.splitter = splitter_level2
elif self.feature_level == 3:
self.splitter = splitter_level3
self.n_iter = n_iter
self.splitter_prev = [0]*self.n_iter
示例8: run_ngram_jaccard
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_ngram_jaccard():
logname = "generate_feature_ngram_jaccard_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
generators = [JaccardCoef_Ngram, DiceDistance_Ngram]
obs_fields_list = []
target_fields_list = []
obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"][:2] )
target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
ngrams = [1,2,3,12,123][:3]
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for generator in generators:
for ngram in ngrams:
param_list = [ngram]
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例9: run_compression_distance
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_compression_distance():
logname = "generate_feature_compression_distance_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
obs_fields_list = []
target_fields_list = []
obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"][:2] )
target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
param_list = []
pf = PairwiseFeatureWrapper(CompressionDistance, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
for ngram in ngrams:
param_list = [ngram, aggregation_mode_prev, aggregation_mode]
pf = PairwiseFeatureWrapper(CompressionDistance_Ngram, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例10: main
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def main(options):
if options.epoch:
time_str = datetime.datetime.now().isoformat()
logname = "Eval_[Model@%s]_[Data@%s]_%s.log" % (options.model_name,
options.data_name, time_str)
logger = logging_utils._get_logger(config.LOG_DIR, logname)
else:
time_str = datetime.datetime.now().isoformat()
logname = "Final_[Model@%s]_[Data@%s]_%s.log" % (options.model_name,
options.data_name, time_str)
logger = logging_utils._get_logger(config.LOG_DIR, logname)
# logger = logging.getLogger()
# logging.basicConfig(format='[%(asctime)s] %(levelname)s: %(message)s', level=logging.INFO)
params_dict = param_space_dict[options.model_name]
task = Task(options.model_name, options.data_name, options.runs, params_dict, logger)
if options.save:
task.save()
else:
if options.epoch:
task.refit()
else:
task.evaluate(options.full)
示例11: __init__
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def __init__(self, test_weight):
log_dir = os.path.join(cfg.LOG_DIR, 'test')
test_weight_path = os.path.join(cfg.WEIGHTS_DIR, test_weight)
with tf.name_scope('input'):
input_data = tf.placeholder(dtype=tf.float32, name='input_data')
training = tf.placeholder(dtype=tf.bool, name='training')
_, _, _, pred_sbbox, pred_mbbox, pred_lbbox = YOLOV3(training).build_nework(input_data)
with tf.name_scope('summary'):
tf.summary.FileWriter(log_dir).add_graph(tf.get_default_graph())
self.__sess = tf.Session()
net_vars = tf.get_collection('YoloV3')
saver = tf.train.Saver(net_vars)
saver.restore(self.__sess, test_weight_path)
super(Yolo_test, self).__init__(self.__sess, input_data, training, pred_sbbox, pred_mbbox, pred_lbbox)
print("input_data.name=", input_data.name)
print("pred_sbbox=", pred_sbbox.name)
print("pred_mbbox=", pred_mbbox.name)
print("pred_lbbox=", pred_lbbox.name)
示例12: _create_feature_conf
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def _create_feature_conf(level, topN, outfile):
log_folder = "%s/level%d_models"%(config.LOG_DIR, level)
feature_list = get_model_list(log_folder, topN)
res = header_pattern%(__file__, level, int(topN), outfile)
for feature in feature_list:
res += '"%s",\n'%feature
res += "]\n"
with open(os.path.join(config.FEAT_CONF_DIR, outfile), "w") as f:
f.write(res)
示例13: run_count
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def run_count():
logname = "generate_feature_first_last_ngram_count_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
generators = [
FirstIntersectCount_Ngram,
LastIntersectCount_Ngram,
FirstIntersectRatio_Ngram,
LastIntersectRatio_Ngram,
]
obs_fields_list = []
target_fields_list = []
## query in document
obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"][:2] )
target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
## document in query
obs_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
target_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"][:2] )
ngrams = [1,2,3,12,123][:3]
for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
for generator in generators:
for ngram in ngrams:
param_list = [ngram]
pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
pf.go()
示例14: main
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def main():
logname = "generate_feature_group_distance_%s.log"%time_utils._timestamp()
logger = logging_utils._get_logger(config.LOG_DIR, logname)
dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
dfTrain = dfAll.iloc[:TRAIN_SIZE].copy()
## run python3 splitter.py first
split = pkl_utils._load("%s/splits_level1.pkl"%config.SPLIT_DIR)
n_iter = len(split)
relevances_complete = [1, 1.25, 1.33, 1.5, 1.67, 1.75, 2, 2.25, 2.33, 2.5, 2.67, 2.75, 3]
relevances = [1, 1.33, 1.67, 2, 2.33, 2.67, 3]
ngrams = [1]
obs_fields = ["search_term"]
target_fields = ["product_title", "product_description"]
aggregation_mode = ["mean", "std", "max", "min", "median"]
## for cv
for i in range(n_iter):
trainInd, validInd = split[i][0], split[i][1]
dfTrain2 = dfTrain.iloc[trainInd].copy()
sub_feature_dir = "%s/Run%d" % (config.FEAT_DIR, i+1)
for target_field in target_fields:
for relevance in relevances:
for ngram in ngrams:
param_list = [dfAll["id"], dfTrain2, target_field, relevance, ngram, aggregation_mode]
pf = PairwiseFeatureWrapper(GroupRelevance_Ngram_Jaccard, dfAll, obs_fields, [target_field], param_list, sub_feature_dir, logger)
pf.go()
## for all
sub_feature_dir = "%s/All" % (config.FEAT_DIR)
for target_field in target_fields:
for relevance in relevances:
for ngram in ngrams:
param_list = [dfAll["id"], dfTrain, target_field, relevance, ngram, aggregation_mode]
pf = PairwiseFeatureWrapper(GroupRelevance_Ngram_Jaccard, dfAll, obs_fields, [target_field], param_list, sub_feature_dir, logger)
pf.go()
示例15: __init__
# 需要导入模块: import config [as 别名]
# 或者: from config import LOG_DIR [as 别名]
def __init__(self, model_folder, model_list, subm_prefix,
weight_opt_max_evals=10, w_min=-1., w_max=1.,
inst_subsample=0.5, inst_subsample_replacement=False,
inst_splitter=None,
model_subsample=1.0, model_subsample_replacement=True,
bagging_size=10, init_top_k=5, epsilon=0.00001,
multiprocessing=False, multiprocessing_num_cores=1,
enable_extreme=True, random_seed=0):
self.model_folder = model_folder
self.model_list = model_list
self.subm_prefix = subm_prefix
self.weight_opt_max_evals = weight_opt_max_evals
self.w_min = w_min
self.w_max = w_max
assert inst_subsample > 0 and inst_subsample <= 1.
self.inst_subsample = inst_subsample
self.inst_subsample_replacement = inst_subsample_replacement
self.inst_splitter = inst_splitter
assert model_subsample > 0
assert (type(model_subsample) == int) or (model_subsample <= 1.)
self.model_subsample = model_subsample
self.model_subsample_replacement = model_subsample_replacement
self.bagging_size = bagging_size
self.init_top_k = init_top_k
self.epsilon = epsilon
self.multiprocessing = multiprocessing
self.multiprocessing_num_cores = multiprocessing_num_cores
self.enable_extreme = enable_extreme
self.random_seed = random_seed
logname = "ensemble_selection_%s.log"%time_utils._timestamp()
self.logger = logging_utils._get_logger(config.LOG_DIR, logname)
self.n_models = len(self.model_list)