本文整理汇总了Python中cnn.CNN属性的典型用法代码示例。如果您正苦于以下问题:Python cnn.CNN属性的具体用法?Python cnn.CNN怎么用?Python cnn.CNN使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cnn
的用法示例。
在下文中一共展示了cnn.CNN属性的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: import cnn [as 别名]
# 或者: from cnn import CNN [as 别名]
def train(algorithm, args):
if algorithm == "mc_svm":
# create multiclass SVM model
return MultiSVM()
elif algorithm == "struct_svm":
return StructuredSVM(args.iterations)
elif algorithm == "quad_kernel":
return StructuredSVM(lambda_fn = lambda x,y: x.dot(y) ** 2)
elif algorithm == "rbf_kernel":
return StructuredSVM(lambda_fn = lambda x,y: math.e ** (-np.linalg.norm(x-y) ** 2/(2000)))
elif algorithm == "cnn":
# train a neural network
nn = CNN((128,128,3))
nn.add_convolution_layer(nodes = 32, size = (3,3))
nn.add_relu_layer()
nn.add_pool_layer(shape = (1,1,2))
nn.add_convolution_layer(nodes = 1, size = (3,3))
nn.add_fc_output_layer(nodes = 6)
return nn
return None
示例2: execute
# 需要导入模块: import cnn [as 别名]
# 或者: from cnn import CNN [as 别名]
def execute(planes_hidden, kernel_size, batch_size, has_mask, id_bias,
rng_seed, eta_list, lmbda, storage_path,
max_epochs, max_stagnation, wait):
num_planes = planes_hidden
if (has_mask):
num_planes = [3] + num_planes + [1]
else:
num_planes = [2] + num_planes + [1]
neural_net = cnn.CNN(
num_planes=num_planes,
kernel_size=kernel_size,
img_shp=(batch_size, cnn.HEIGHT, cnn.WIDTH),
has_mask=has_mask,
id_bias=id_bias,
rng_seed=rng_seed,
eta=eta_list[0],
lmbda=lmbda)
files = np.load('storage/datapairs_glasses.npz')
training = files['training']
validation = files['validation']
files.close()
print("\n*** Training network... ***\n")
trainer.train_nn(
neural_net=neural_net,
has_mask=has_mask,
rng_seed = rng_seed,
training=training,
validation=validation,
decoder=data_organizer.prepare_imagepair,
storage_path=storage_path,
max_epochs=max_epochs,
max_stagnation=max_stagnation,
eta_list=eta_list[1:],
wait=wait)
print("\n*** Stopping criteria met; end of training ***\n")
示例3: load
# 需要导入模块: import cnn [as 别名]
# 或者: from cnn import CNN [as 别名]
def load(storage_path):
info_files = np.load(storage_path)
info = {'arch': info_files['arch'].item(),
'params': info_files['params'],
'rng_seed': info_files['rng_seed'].item()}
info_files.close()
neural_net = cnn.CNN.load_info(info)
return CNN_Interface(neural_net)
示例4: run
# 需要导入模块: import cnn [as 别名]
# 或者: from cnn import CNN [as 别名]
def run():
(X_train, y_train), (X_test, y_test) = datasets.load_data(img_rows=32, img_cols=32)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = CNN(input_shape=X_train.shape[1:], nb_classes=nb_classes)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
X_train = preprocess_input(X_train)
X_test = preprocess_input(X_test)
csv_logger = CSVLogger('../log/cnn.log')
checkpointer = ModelCheckpoint(filepath="/tmp/weights.hdf5", monitor="val_acc", verbose=1, save_best_only=True)
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(X_train)
model.fit_generator(datagen.flow(X_train, Y_train,
batch_size=batch_size),
samples_per_epoch=X_train.shape[0],
nb_epoch=nb_epoch,
validation_data=(X_test, Y_test),
callbacks=[csv_logger, checkpointer])
示例5: __init__
# 需要导入模块: import cnn [as 别名]
# 或者: from cnn import CNN [as 别名]
def __init__(self, sequence_length=0, num_classes=0, vocab_size=0, num_kernels=0, step_size=1e-2, Q=None,
FLAGS=None):
"""
Called when initializing the classifier
"""
self._estimator_type = "classifier"
self.Q = tf.constant(Q, dtype=tf.float32, name="input_phi")
self.sequence_length = sequence_length
self.num_classes = num_classes
self.vocab_size = vocab_size
self.num_kernels = num_kernels
# Data loading params
self.FLAGS = FLAGS
self.FLAGS._parse_flags()
session_conf = tf.ConfigProto(
device_count={'GPU': 0},
allow_soft_placement=self.FLAGS.allow_soft_placement,
log_device_placement=self.FLAGS.log_device_placement)
self.sess = tf.Session(config=session_conf)
self.cnn = CNN(self.Q,
sequence_length=sequence_length,
num_classes=num_classes,
vocab_size=vocab_size,
num_kernels=self.num_kernels,
embedding_size=self.FLAGS.embedding_dim,
filter_sizes=list(map(int, self.FLAGS.filter_sizes.split(","))),
num_filters=self.FLAGS.num_filters,
l2_reg_lambda=self.FLAGS.l2_reg_lambda)
# Define Training procedure
self.optimizer = tf.train.AdagradOptimizer(step_size).minimize(self.cnn.loss)
self.sess.run(tf.global_variables_initializer())