本文整理汇总了Python中chainer.optimizers.SGD属性的典型用法代码示例。如果您正苦于以下问题:Python optimizers.SGD属性的具体用法?Python optimizers.SGD怎么用?Python optimizers.SGD使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类chainer.optimizers
的用法示例。
在下文中一共展示了optimizers.SGD属性的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_cleargrad
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def test_cleargrad(self, backend_config):
class CleargradHook(object):
name = 'Cleargrad'
timing = 'pre'
def __init__(self, _):
pass
def __call__(self, opt):
for param in opt.target.params():
# Clear all grads
param.cleargrad()
target = self.target
target.to_device(backend_config.device)
# TODO(niboshi): Do not use SGD in GradientMethod test
opt = optimizers.SGD(lr=1)
opt.setup(target)
opt.add_hook(CleargradHook(self))
opt.add_hook(DummyHook(self))
opt.update()
示例2: check_hardclipping
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def check_hardclipping(self, backend_configs):
target = self.target
assert len(backend_configs) == len(list(target.params()))
devices = [bc.device for bc in backend_configs]
lower_bound = -0.9
upper_bound = 1.1
expects = []
# Compute expected
for param, device in zip(target.params(), devices):
expects.append(param.array - np.clip(param.grad,
lower_bound, upper_bound))
param.to_device(device)
# Apply optimizer_hook
opt = optimizers.SGD(lr=1)
opt.setup(self.target)
opt.add_hook(
optimizer_hooks.GradientHardClipping(lower_bound, upper_bound))
opt.update()
# Validate
for expect, param in zip(expects, target.params()):
testing.assert_allclose(expect, param.array)
示例3: check_clipping
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def check_clipping(self, backend_configs, rate):
target = self.target
norm = self.norm
assert len(backend_configs) == len(list(target.params()))
devices = [bc.device for bc in backend_configs]
threshold = norm * rate
expects = []
for param, device in zip(target.params(), devices):
expects.append(param.array - param.grad * min(1, rate))
param.to_device(device)
opt = optimizers.SGD(lr=1)
opt.setup(target)
opt.add_hook(
optimizer_hooks.GradientClipping(threshold))
opt.update()
for expect, param in zip(expects, target.params()):
testing.assert_allclose(expect, param.array)
示例4: check_weight_decay
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def check_weight_decay(self, backend_configs):
target = self.target
assert len(backend_configs) == len(list(target.params()))
devices = [bc.device for bc in backend_configs]
decay = 0.2
# Compute expected
expects = []
for param, device in zip(target.params(), devices):
expects.append(param.array - param.grad - decay * param.array)
param.to_device(device)
opt = optimizers.SGD(lr=1)
opt.setup(self.target)
opt.add_hook(optimizer_hooks.WeightDecay(decay))
opt.update()
# Validate
for expect, param in zip(expects, target.params()):
testing.assert_allclose(expect, param.array)
示例5: train
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def train(network, loss, X_tr, Y_tr, X_te, Y_te, n_epochs=30, gamma=1):
model= Objective(network, loss=loss, gamma=gamma)
#optimizer = optimizers.SGD()
optimizer = optimizers.Adam()
optimizer.setup(model)
train = tuple_dataset.TupleDataset(X_tr, Y_tr)
test = tuple_dataset.TupleDataset(X_te, Y_te)
train_iter = iterators.SerialIterator(train, batch_size=1, shuffle=True)
test_iter = iterators.SerialIterator(test, batch_size=1, repeat=False,
shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (n_epochs, 'epoch'))
trainer.run()
示例6: setUp
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def setUp(self):
param0_data = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
param0_grad = np.copy(param0_data)
param1_data = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
param1_grad = np.copy(param1_data)
self.target = chainer.ChainList(
SimpleLink(param0_data, param0_grad),
SimpleLink(param1_data, param1_grad))
lr = 1.0
if self.loss_scale is not None:
lr = self.loss_scale
for i in range(2):
self.target[i].param._loss_scale = self.loss_scale
# TODO(niboshi): Do not use SGD in GradientMethod test
self.optimizer = chainer.optimizers.SGD(lr)
示例7: create
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def create(self):
return optimizers.SGD(0.1)
示例8: check_gradient_noise
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def check_gradient_noise(self, backend_configs):
target = self.target
assert len(backend_configs) == len(list(target.params()))
devices = [bc.device for bc in backend_configs]
noise_value = np.asarray(self.noise_value)
expects = []
# Compute expected
for param, device in zip(target.params(), devices):
expects.append(param.array - param.grad - noise_value)
param.to_device(device)
def test_noise(xp, shape, dtype, hook, opt):
# Make noise value an array of current backend
return xp.array(noise_value)
noise = mock.Mock(side_effect=test_noise)
opt = optimizers.SGD(lr=1)
opt.setup(self.target)
hook = optimizer_hooks.GradientNoise(self.eta, noise_func=noise)
opt.add_hook(hook)
opt.update()
# Validate
for expect, param in zip(expects, target.params()):
testing.assert_allclose(expect, param.array)
self.assertEqual(noise.call_count, len(tuple(self.target.params())))
calls = []
for param in target.params():
xp = param.device.xp
calls.append(mock.call(xp, (2, 3), np.dtype('float32'), hook,
param.update_rule))
# Order does not matter
assert(any([noise.mock_calls == list(permuted_calls)
for permuted_calls in itertools.permutations(calls)]))
示例9: check_LARS
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def check_LARS(self, backend_configs):
target = self.target
devices = [bc.device for bc in backend_configs]
assert len(backend_configs) == len(list(target[0].params()))
assert len(backend_configs) == len(list(target[1].params()))
threshold = 1e-2
weight_decay = 0.2
eps = 1e-9
expects0 = []
expects1 = []
# Compute expected
for param, device in zip(target[0].params(), devices):
p0_norm = np.linalg.norm(param.array)
g0_norm = np.linalg.norm(param.grad)
clip_rate = p0_norm / (eps + g0_norm + weight_decay * p0_norm)
expects0.append(param.array - clip_rate
* (param.grad + weight_decay * param.array))
param.to_device(device)
for param, device in zip(target[1].params(), devices):
expects1.append(param.array - 1.0
* (param.grad + weight_decay * param.array))
opt = optimizers.SGD(lr=1)
opt.setup(self.target)
opt.add_hook(optimizer_hooks.GradientLARS(threshold=threshold,
weight_decay=weight_decay,
eps=eps))
opt.update()
for expect, param in zip(expects0, target[0].params()):
testing.assert_allclose(expect, param.array)
for expect, param in zip(expects1, target[1].params()):
testing.assert_allclose(expect, param.array)
示例10: _updated_array
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def _updated_array(self, backend_config, loss_scale):
arr = np.arange(3, dtype=np.float32)
param = chainer.Parameter(arr)
link = chainer.Link()
with link.init_scope():
link.p = param
link.to_device(backend_config.device)
opt = optimizers.SGD(lr=1)
opt.setup(link)
opt.add_hook(optimizer_hooks.WeightDecay(1/8.))
loss = F.sum(link.p ** 3)
loss.backward(loss_scale=loss_scale)
opt.update()
return link.p.array
示例11: set_params
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def set_params(self, params):
self.gpu = params.get('gpu',False)
self.learning_rate = params.get('learning_rate',0.00025)
self.decay_rate = params.get('decay_rate',0.95)
self.discount = params.get('discount',0.95)
self.clip_err = params.get('clip_err',False)
self.target_net_update = params.get('target_net_update',10000)
self.double_DQN = params.get('double_DQN',False)
# setting up various possible gradient update algorithms
opt = params.get('optim_name', 'ADAM')
if opt == 'RMSprop':
self.optimizer = optimizers.RMSprop(lr=self.learning_rate, alpha=self.decay_rate)
elif opt == 'ADADELTA':
print("Supplied learning rate not used with ADADELTA gradient update method")
self.optimizer = optimizers.AdaDelta()
elif opt == 'ADAM':
self.optimizer = optimizers.Adam(alpha=self.learning_rate)
elif opt == 'SGD':
self.optimizer = optimizers.SGD(lr=self.learning_rate)
else:
print('The requested optimizer is not supported!!!')
exit()
if self.clip_err is not False:
self.optimizer.add_hook(chainer.optimizer.GradientClipping(self.clip_err))
self.optim_name = params['optim_name']
示例12: check_gradient_scaling
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def check_gradient_scaling(self):
w = self.target.param.array
g = self.target.param.grad
rate = 0.2
expect = w - g * rate
opt = optimizers.SGD(lr=1)
opt.setup(self.target)
opt.add_hook(GradientScaling(rate))
opt.update()
testing.assert_allclose(expect, w)
示例13: create_optimizer
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def create_optimizer(model):
cp: Dict[str, Any] = copy(config.train.optimizer)
n = cp.pop('name').lower()
if n == 'adam':
optimizer = optimizers.Adam(**cp)
elif n == 'sgd':
optimizer = optimizers.SGD(**cp)
else:
raise ValueError(n)
optimizer.setup(model)
return optimizer
示例14: __init__
# 需要导入模块: from chainer import optimizers [as 别名]
# 或者: from chainer.optimizers import SGD [as 别名]
def __init__(self,optimizer=None,vocab=None,n_input_units=1000,
n_units=650,grad_clip=5,bproplen=35):
if vocab is None:
vocab=BatchTrainer.vocab
self.vocab=vocab
n_vocab = len(vocab)
super(LSTM,self).__init__('LSTM')
self.func = deel.model.lstm.RNNLM(n_input_units=n_input_units,n_vocab=n_vocab,n_units=n_units)
self.func.compute_accuracy = False
for param in self.func.params():
data = param.data
data[:] = np.random.uniform(-0.1, 0.1, data.shape)
if Deel.gpu>=0:
self.func.to_gpu()
if optimizer is None:
self.optimizer = optimizers.SGD(lr=1.)
self.optimizer.setup(self.func)
self.clip = chainer.optimizer.GradientClipping(grad_clip)
self.optimizer.add_hook(self.clip)
self.accum_loss = 0
self.cur_log_perp = Deel.xp.zeros(())