本文整理汇总了Python中Crypto.Cipher.AES.MODE_OFB属性的典型用法代码示例。如果您正苦于以下问题:Python AES.MODE_OFB属性的具体用法?Python AES.MODE_OFB怎么用?Python AES.MODE_OFB使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类Crypto.Cipher.AES
的用法示例。
在下文中一共展示了AES.MODE_OFB属性的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: encrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def encrypt( raw, key, iv ):
"""
Encrypt the raw data using the provided key and initial IV. Data will be
encrypted using AES OFB mode.
Args:
raw: plaintext data to be encrypted
key: AES key used for encryption
iv: Initial IV used for encryption
"""
result = ''
tmp_iv = iv
text = pad(raw)
for i in xrange(0, len(text) / BS):
lower_bound = i * 16
upper_bound = (i+1) * 16
tmp = AES.new(key, AES.MODE_OFB, tmp_iv).decrypt( text[lower_bound:upper_bound] )
tmp_iv = tmp
result += tmp
return result
示例2: decrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def decrypt( raw, key, iv ):
"""
Decrypt the raw data using the provided key and iv.
Netwire encrypts data using AES OFB mode. Initial IV is sent in the key exchange
packet. This iv will decrypt the initial block of 16 bytes of data, each
subsequent block will use the previous block as an IV.
Args:
raw: raw data to be decrypted
key: AES key used to decrypt the data
iv: initial IV used for decryption
"""
result = ''
tmp_iv = iv
ciphertext = pad(raw)
for i in xrange(0, len(ciphertext) / BS):
lower_bound = i * 16
upper_bound = (i+1) * 16
tmp = AES.new(key, AES.MODE_OFB, tmp_iv).decrypt( ciphertext[lower_bound:upper_bound] )
tmp_iv = ciphertext[lower_bound:upper_bound]
result += tmp
return result
示例3: prompt_encrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def prompt_encrypt(self):
"""ask for key, secret and password on the command line,
then encrypt the secret and store it in the ini file."""
print("Please copy/paste key and secret from exchange and")
print("then provide a password to encrypt them.")
print("")
key = input(" key: ").strip()
secret = input(" secret: ").strip()
while True:
password1 = getpass.getpass(" password: ").strip()
if password1 == "":
print("aborting")
return
password2 = getpass.getpass("password (again): ").strip()
if password1 != password2:
print("you had a typo in the password. try again...")
else:
break
hashed_pass = hashlib.sha512(password1.encode("utf-8")).digest()
crypt_key = hashed_pass[:32]
crypt_ini = hashed_pass[-16:]
aes = AES.new(crypt_key, AES.MODE_OFB, crypt_ini)
# since the secret is a base64 string we can just just pad it with
# spaces which can easily be stripped again after decryping
print(len(secret))
secret += " " * (16 - len(secret) % 16)
print(len(secret))
secret = base64.b64encode(aes.encrypt(secret)).decode("ascii")
self.config.set("api", "secret_key", key)
self.config.set("api", "secret_secret", secret)
self.config.save()
print("encrypted secret has been saved in %s" % self.config.filename)
示例4: setup
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def setup(self):
from Crypto.Cipher import AES
self.cipher = AES.new(self.key, AES.MODE_OFB, iv=self.iv)
示例5: test_aes_128
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def test_aes_128(self):
plaintext = '6bc1bee22e409f96e93d7e117393172a' +\
'ae2d8a571e03ac9c9eb76fac45af8e51' +\
'30c81c46a35ce411e5fbc1191a0a52ef' +\
'f69f2445df4f9b17ad2b417be66c3710'
ciphertext = '3b3fd92eb72dad20333449f8e83cfb4a' +\
'7789508d16918f03f53c52dac54ed825' +\
'9740051e9c5fecf64344f7a82260edcc' +\
'304c6528f659c77866a510d9c1d6ae5e'
key = '2b7e151628aed2a6abf7158809cf4f3c'
iv = '000102030405060708090a0b0c0d0e0f'
key = unhexlify(key)
iv = unhexlify(iv)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.encrypt(plaintext), ciphertext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.decrypt(ciphertext), plaintext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.encrypt(plaintext[:-8]), ciphertext[:-8])
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.decrypt(ciphertext[:-8]), plaintext[:-8])
示例6: test_aes_192
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def test_aes_192(self):
plaintext = '6bc1bee22e409f96e93d7e117393172a' +\
'ae2d8a571e03ac9c9eb76fac45af8e51' +\
'30c81c46a35ce411e5fbc1191a0a52ef' +\
'f69f2445df4f9b17ad2b417be66c3710'
ciphertext = 'cdc80d6fddf18cab34c25909c99a4174' +\
'fcc28b8d4c63837c09e81700c1100401' +\
'8d9a9aeac0f6596f559c6d4daf59a5f2' +\
'6d9f200857ca6c3e9cac524bd9acc92a'
key = '8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b'
iv = '000102030405060708090a0b0c0d0e0f'
key = unhexlify(key)
iv = unhexlify(iv)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.encrypt(plaintext), ciphertext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.decrypt(ciphertext), plaintext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.encrypt(plaintext[:-8]), ciphertext[:-8])
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.decrypt(ciphertext[:-8]), plaintext[:-8])
示例7: test_aes_256
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def test_aes_256(self):
plaintext = '6bc1bee22e409f96e93d7e117393172a' +\
'ae2d8a571e03ac9c9eb76fac45af8e51' +\
'30c81c46a35ce411e5fbc1191a0a52ef' +\
'f69f2445df4f9b17ad2b417be66c3710'
ciphertext = 'dc7e84bfda79164b7ecd8486985d3860' +\
'4febdc6740d20b3ac88f6ad82a4fb08d' +\
'71ab47a086e86eedf39d1c5bba97c408' +\
'0126141d67f37be8538f5a8be740e484'
key = '603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4'
iv = '000102030405060708090a0b0c0d0e0f'
key = unhexlify(key)
iv = unhexlify(iv)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.encrypt(plaintext), ciphertext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.decrypt(ciphertext), plaintext)
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.encrypt(plaintext[:-8]), ciphertext[:-8])
cipher = AES.new(key, AES.MODE_OFB, iv)
self.assertEqual(cipher.decrypt(ciphertext[:-8]), plaintext[:-8])
示例8: get_encrypted_data
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def get_encrypted_data(self, secret, data):
data = data[27:]
header = data[:2]
salt = data[2:6]
iv = data[6:22]
encrypted_data = data[22:42]
if header != self.RECOVERY_TOKEN_HEADER:
raise Exception('Header mismatch')
key = self.get_key(secret, salt)
cipher = AES.new(key, AES.MODE_OFB, iv)
return cipher.decrypt(encrypted_data)
示例9: decrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def decrypt(self, password):
"""decrypt "secret_secret" from the ini file with the given password.
This will return false if decryption did not seem to be successful.
After this menthod succeeded the application can access the secret"""
key = self.config.get_string("api", "secret_key")
sec = self.config.get_string("api", "secret_secret")
if sec == "" or key == "":
return self.S_NO_SECRET
hashed_pass = hashlib.sha512(password.encode("utf-8")).digest()
crypt_key = hashed_pass[:32]
crypt_ini = hashed_pass[-16:]
aes = AES.new(crypt_key, AES.MODE_OFB, crypt_ini)
try:
encrypted_secret = base64.b64decode(sec.strip().encode("ascii"))
self.secret = aes.decrypt(encrypted_secret).strip()
self.key = key.strip()
except ValueError:
return self.S_FAIL
# now test if we now have something plausible
try:
print("testing secret...")
# is it plain ascii? (if not this will raise exception)
# dummy = self.secret.decode("ascii")
# can it be decoded? correct size afterwards?
if len(base64.b64decode(self.secret)) != 64:
raise Exception("Decrypted secret has wrong size")
if not self.secret:
raise Exception("Unable to decrypt secret")
print("testing key...")
# key must be only hex digits and have the right size
# hex_key = self.key.replace("-", "").encode("ascii")
# if len(binascii.unhexlify(hex_key)) != 16:
# raise Exception("key has wrong size")
if not self.key:
raise Exception("Unable to decrypt key")
print("OK")
return self.S_OK
except Exception as exc:
# this key and secret do not work
self.secret = ""
self.key = ""
print("### Error occurred while testing the decrypted secret:")
print(" '%s'" % exc)
print(" This does not seem to be a valid API secret")
return self.S_FAIL
示例10: des_encrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def des_encrypt(
self,
key: str,
iv: str = "0000000000000000",
mode: str = "CBC",
hex_key: bool = False,
hex_iv: bool = True,
):
"""Encrypt raw state with DES
DES is a previously dominant algorithm for encryption, and was published
as an official U.S. Federal Information Processing Standard (FIPS). It is
now considered to be insecure due to its small key size. DES uses a key
length of 8 bytes (64 bits).<br>Triple DES uses a key length of 24 bytes.
You can generate a password-based key using one of the KDF operations.
The Initialization Vector should be 8 bytes long. If not entered, it will
default to 8 null bytes. Padding: In CBC and ECB mode, PKCS#7 padding will be used.
Args:
key (str): Required. The secret key
iv (str, optional): IV for certain modes only. Defaults to '0000000000000000'.
mode (str, optional): Encryption mode. Defaults to 'CBC'.
hex_key (bool, optional): If the secret key is a hex string. Defaults to False.
hex_iv (bool, optional): If the IV is a hex string. Defaults to True.
Returns:
Chepy: The Chepy object.
Examples:
>>> Chepy("some data").des_encrypt("70617373776f7264", hex_key=True).o
b"1ee5cb52954b211d1acd6e79c598baac"
To encrypt using a differnt mode
>>> Chepy("some data").des_encrypt("password", mode="CTR").o
b"0b7399049b0267d93d"
"""
self.__check_mode(mode)
key, iv = self._convert_key(key, iv, hex_key, hex_iv)
if mode == "CBC":
cipher = DES.new(key, mode=DES.MODE_CBC, iv=iv)
self.state = cipher.encrypt(pad(self._convert_to_bytes(), 8))
return self
elif mode == "ECB":
cipher = DES.new(key, mode=DES.MODE_ECB)
self.state = cipher.encrypt(pad(self._convert_to_bytes(), 8))
return self
elif mode == "CTR":
cipher = DES.new(key, mode=DES.MODE_CTR, nonce=b"")
self.state = cipher.encrypt(self._convert_to_bytes())
return self
elif mode == "OFB":
cipher = DES.new(key, mode=DES.MODE_OFB, iv=iv)
self.state = cipher.encrypt(self._convert_to_bytes())
return self
示例11: des_decrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def des_decrypt(
self,
key: str,
iv: str = "0000000000000000",
mode: str = "CBC",
hex_key: bool = False,
hex_iv: bool = True,
):
"""Decrypt raw state encrypted with DES.
DES is a previously dominant algorithm for encryption, and was published
as an official U.S. Federal Information Processing Standard (FIPS). It is
now considered to be insecure due to its small key size. DES uses a key
length of 8 bytes (64 bits).<br>Triple DES uses a key length of 24 bytes.
You can generate a password-based key using one of the KDF operations.
The Initialization Vector should be 8 bytes long. If not entered, it will
default to 8 null bytes. Padding: In CBC and ECB mode, PKCS#7 padding will be used.
Args:
key (str): Required. The secret key
iv (str, optional): IV for certain modes only. Defaults to '0000000000000000'.
mode (str, optional): Encryption mode. Defaults to 'CBC'.
hex_key (bool, optional): If the secret key is a hex string. Defaults to False.
hex_iv (bool, optional): If the IV is a hex string. Defaults to True.
Returns:
Chepy: The Chepy object.
Examples:
>>> Chepy("1ee5cb52954b211d1acd6e79c598baac").hex_to_str().des_decrypt("password").o
b"some data"
"""
self.__check_mode(mode)
key, iv = self._convert_key(key, iv, hex_key, hex_iv)
if mode == "CBC":
cipher = DES.new(key, mode=DES.MODE_CBC, iv=iv)
self.state = unpad(cipher.decrypt(self._convert_to_bytes()), 8)
return self
elif mode == "ECB":
cipher = DES.new(key, mode=DES.MODE_ECB)
self.state = unpad(cipher.decrypt(self._convert_to_bytes()), 8)
return self
elif mode == "CTR":
cipher = DES.new(key, mode=DES.MODE_CTR, nonce=b"")
self.state = cipher.decrypt(self._convert_to_bytes())
return self
elif mode == "OFB":
cipher = DES.new(key, mode=DES.MODE_OFB, iv=iv)
self.state = cipher.decrypt(self._convert_to_bytes())
return self
示例12: triple_des_encrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def triple_des_encrypt(
self,
key: str,
iv: str = "0000000000000000",
mode: str = "CBC",
hex_key: bool = False,
hex_iv: bool = True,
):
"""Encrypt raw state with Triple DES
Triple DES applies DES three times to each block to increase key size. Key:
Triple DES uses a key length of 24 bytes (192 bits).<br>DES uses a key length
of 8 bytes (64 bits).<br><br>You can generate a password-based key using one
of the KDF operations. IV: The Initialization Vector should be 8 bytes long.
If not entered, it will default to 8 null bytes. Padding: In CBC and ECB
mode, PKCS#7 padding will be used.
Args:
key (str): Required. The secret key
iv (str, optional): IV for certain modes only. Defaults to '0000000000000000'.
mode (str, optional): Encryption mode. Defaults to 'CBC'.
hex_key (bool, optional): If the secret key is a hex string. Defaults to False.
hex_iv (bool, optional): If the IV is a hex string. Defaults to True.
Returns:
Chepy: The Chepy object.
Examples:
>>> Chepy("some data").triple_des_encrypt("super secret password !!", mode="ECB").o
b"f8b27a0d8c837edc8fb00ea85f502fb4"
"""
self.__check_mode(mode)
key, iv = self._convert_key(key, iv, hex_key, hex_iv)
if mode == "CBC":
cipher = DES3.new(key, mode=DES3.MODE_CBC, iv=iv)
self.state = cipher.encrypt(pad(self._convert_to_bytes(), 8))
return self
elif mode == "ECB":
cipher = DES3.new(key, mode=DES3.MODE_ECB)
self.state = cipher.encrypt(pad(self._convert_to_bytes(), 8))
return self
elif mode == "CTR":
cipher = DES3.new(key, mode=DES3.MODE_CTR, nonce=b"")
self.state = cipher.encrypt(self._convert_to_bytes())
return self
elif mode == "OFB":
cipher = DES3.new(key, mode=DES3.MODE_OFB, iv=iv)
self.state = cipher.encrypt(self._convert_to_bytes())
return self
示例13: triple_des_decrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def triple_des_decrypt(
self,
key: str,
iv: str = "0000000000000000",
mode: str = "CBC",
hex_key: bool = False,
hex_iv: bool = True,
):
"""Decrypt raw state encrypted with DES.
Triple DES applies DES three times to each block to increase key size. Key:
Triple DES uses a key length of 24 bytes (192 bits).<br>DES uses a key length
of 8 bytes (64 bits).<br><br>You can generate a password-based key using one
of the KDF operations. IV: The Initialization Vector should be 8 bytes long.
If not entered, it will default to 8 null bytes. Padding: In CBC and ECB
mode, PKCS#7 padding will be used.
Args:
key (str): Required. The secret key
iv (str, optional): IV for certain modes only. Defaults to '0000000000000000'.
mode (str, optional): Encryption mode. Defaults to 'CBC'.
hex_key (bool, optional): If the secret key is a hex string. Defaults to False.
hex_iv (bool, optional): If the IV is a hex string. Defaults to True.
Returns:
Chepy: The Chepy object.
Examples:
>>> c = Chepy("f8b27a0d8c837edce87dd13a1ab41f96")
>>> c.hex_to_str()
>>> c.triple_des_decrypt("super secret password !!")
>>> c.o
b"some data"
"""
self.__check_mode(mode)
key, iv = self._convert_key(key, iv, hex_key, hex_iv)
if mode == "CBC":
cipher = DES3.new(key, mode=DES3.MODE_CBC, iv=iv)
self.state = unpad(cipher.decrypt(self._convert_to_bytes()), 8)
return self
elif mode == "ECB":
cipher = DES3.new(key, mode=DES3.MODE_ECB)
self.state = unpad(cipher.decrypt(self._convert_to_bytes()), 8)
return self
elif mode == "CTR":
cipher = DES3.new(key, mode=DES3.MODE_CTR, nonce=b"")
self.state = cipher.decrypt(self._convert_to_bytes())
return self
elif mode == "OFB":
cipher = DES3.new(key, mode=DES3.MODE_OFB, iv=iv)
self.state = cipher.decrypt(self._convert_to_bytes())
return self
示例14: blowfish_encrypt
# 需要导入模块: from Crypto.Cipher import AES [as 别名]
# 或者: from Crypto.Cipher.AES import MODE_OFB [as 别名]
def blowfish_encrypt(
self,
key: str,
iv: str = "0000000000000000",
mode: str = "CBC",
hex_key: bool = False,
hex_iv: bool = True,
):
"""Encrypt raw state with Blowfish
Blowfish is a symmetric-key block cipher designed in 1993 by
Bruce Schneier and included in a large number of cipher suites
and encryption products. AES now receives more attention.
IV: The Initialization Vector should be 8 bytes long.
Args:
key (str): Required. The secret key
iv (str, optional): IV for certain modes only. Defaults to '0000000000000000'.
mode (str, optional): Encryption mode. Defaults to 'CBC'.
hex_key (bool, optional): If the secret key is a hex string. Defaults to False.
hex_iv (bool, optional): If the IV is a hex string. Defaults to True.
Returns:
Chepy: The Chepy object.
Examples:
>>> Chepy("some data").blowfish_encrypt("password", mode="ECB").o
b"d9b0a79853f139603951bff96c3d0dd5"
"""
self.__check_mode(mode)
key, iv = self._convert_key(key, iv, hex_key, hex_iv)
if mode == "CBC":
cipher = Blowfish.new(key, mode=Blowfish.MODE_CBC, iv=iv)
self.state = cipher.encrypt(pad(self._convert_to_bytes(), 8))
return self
elif mode == "ECB":
cipher = Blowfish.new(key, mode=Blowfish.MODE_ECB)
self.state = cipher.encrypt(pad(self._convert_to_bytes(), 8))
return self
elif mode == "CTR":
cipher = Blowfish.new(key, mode=Blowfish.MODE_CTR, nonce=b"")
self.state = cipher.encrypt(self._convert_to_bytes())
return self
elif mode == "OFB":
cipher = Blowfish.new(key, mode=Blowfish.MODE_OFB, iv=iv)
self.state = cipher.encrypt(self._convert_to_bytes())
return self