本文整理汇总了PHP中phpseclib\Math\BigInteger::modInverse方法的典型用法代码示例。如果您正苦于以下问题:PHP BigInteger::modInverse方法的具体用法?PHP BigInteger::modInverse怎么用?PHP BigInteger::modInverse使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类phpseclib\Math\BigInteger
的用法示例。
在下文中一共展示了BigInteger::modInverse方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的PHP代码示例。
示例1: getInverse
/**
* Get the inverse of the current prime.
*
* @return int
*/
public function getInverse()
{
$x = new BigInteger(Optimus::MAX_INT + 1);
if (!($inverse = $this->prime->modInverse($x))) {
throw new InvalidPrimeException($this->prime);
}
return (int) $inverse->toString();
}
示例2: handle
/**
* Execute the console command.
*
* @return mixed
*/
public function handle()
{
$maxInt = 2147483647;
$min = new BigInteger(10000000.0);
$max = new BigInteger($maxInt);
$prime = $max->randomPrime($min, $max);
$a = new BigInteger($prime);
$b = new BigInteger($maxInt + 1);
if (!($inverse = $a->modInverse($b))) {
$this->error("An error accured during calculation. Please re-run 'php artisan rocid:generate'.");
return;
}
$random = hexdec(bin2hex(Random::string(4))) & $maxInt;
$this->info("Generated numbers (Paste these in config/rockid.php) :\nprime: {$prime}\ninverse: {$inverse}\nrandom: {$random}");
}
示例3: execute
protected function execute(InputInterface $input, OutputInterface $output)
{
$prime = $input->getArgument('prime');
// Calculate the inverse.
$a = new BigInteger($prime);
$b = new BigInteger(Optimus::MAX_INT + 1);
if (!($inverse = $a->modInverse($b))) {
$output->writeln('<error>Invalid prime number</>');
return;
}
$rand = hexdec(bin2hex(Random::string(4))) & Optimus::MAX_INT;
$output->writeln('Prime: ' . $prime);
$output->writeln('Inverse: ' . $inverse);
$output->writeln('Random: ' . $rand);
$output->writeln('');
$output->writeln(' new Optimus(' . $prime . ', ' . $inverse . ', ' . $rand . ');');
}
示例4: getServerPublicHostKey
/**
* Returns the server public host key.
*
* Caching this the first time you connect to a server and checking the result on subsequent connections
* is recommended. Returns false if the server signature is not signed correctly with the public host key.
*
* @return Mixed
* @access public
*/
function getServerPublicHostKey()
{
if (!($this->bitmap & self::MASK_CONSTRUCTOR)) {
if (!$this->_connect()) {
return false;
}
}
$signature = $this->signature;
$server_public_host_key = $this->server_public_host_key;
extract(unpack('Nlength', $this->_string_shift($server_public_host_key, 4)));
$this->_string_shift($server_public_host_key, $length);
if ($this->signature_validated) {
return $this->bitmap ? $this->signature_format . ' ' . base64_encode($this->server_public_host_key) : false;
}
$this->signature_validated = true;
switch ($this->signature_format) {
case 'ssh-dss':
$zero = new BigInteger();
$temp = unpack('Nlength', $this->_string_shift($server_public_host_key, 4));
$p = new BigInteger($this->_string_shift($server_public_host_key, $temp['length']), -256);
$temp = unpack('Nlength', $this->_string_shift($server_public_host_key, 4));
$q = new BigInteger($this->_string_shift($server_public_host_key, $temp['length']), -256);
$temp = unpack('Nlength', $this->_string_shift($server_public_host_key, 4));
$g = new BigInteger($this->_string_shift($server_public_host_key, $temp['length']), -256);
$temp = unpack('Nlength', $this->_string_shift($server_public_host_key, 4));
$y = new BigInteger($this->_string_shift($server_public_host_key, $temp['length']), -256);
/* The value for 'dss_signature_blob' is encoded as a string containing
r, followed by s (which are 160-bit integers, without lengths or
padding, unsigned, and in network byte order). */
$temp = unpack('Nlength', $this->_string_shift($signature, 4));
if ($temp['length'] != 40) {
user_error('Invalid signature');
return $this->_disconnect(NET_SSH2_DISCONNECT_KEY_EXCHANGE_FAILED);
}
$r = new BigInteger($this->_string_shift($signature, 20), 256);
$s = new BigInteger($this->_string_shift($signature, 20), 256);
switch (true) {
case $r->equals($zero):
case $r->compare($q) >= 0:
case $s->equals($zero):
case $s->compare($q) >= 0:
user_error('Invalid signature');
return $this->_disconnect(NET_SSH2_DISCONNECT_KEY_EXCHANGE_FAILED);
}
$w = $s->modInverse($q);
$u1 = $w->multiply(new BigInteger(sha1($this->exchange_hash), 16));
list(, $u1) = $u1->divide($q);
$u2 = $w->multiply($r);
list(, $u2) = $u2->divide($q);
$g = $g->modPow($u1, $p);
$y = $y->modPow($u2, $p);
$v = $g->multiply($y);
list(, $v) = $v->divide($p);
list(, $v) = $v->divide($q);
if (!$v->equals($r)) {
user_error('Bad server signature');
return $this->_disconnect(NET_SSH2_DISCONNECT_HOST_KEY_NOT_VERIFIABLE);
}
break;
case 'ssh-rsa':
$temp = unpack('Nlength', $this->_string_shift($server_public_host_key, 4));
$e = new BigInteger($this->_string_shift($server_public_host_key, $temp['length']), -256);
$temp = unpack('Nlength', $this->_string_shift($server_public_host_key, 4));
$rawN = $this->_string_shift($server_public_host_key, $temp['length']);
$n = new BigInteger($rawN, -256);
$nLength = strlen(ltrim($rawN, ""));
/*
$temp = unpack('Nlength', $this->_string_shift($signature, 4));
$signature = $this->_string_shift($signature, $temp['length']);
$rsa = new RSA();
$rsa->setSignatureMode(RSA::SIGNATURE_PKCS1);
$rsa->loadKey(array('e' => $e, 'n' => $n), RSA::PUBLIC_FORMAT_RAW);
if (!$rsa->verify($this->exchange_hash, $signature)) {
user_error('Bad server signature');
return $this->_disconnect(NET_SSH2_DISCONNECT_HOST_KEY_NOT_VERIFIABLE);
}
*/
$temp = unpack('Nlength', $this->_string_shift($signature, 4));
$s = new BigInteger($this->_string_shift($signature, $temp['length']), 256);
// validate an RSA signature per "8.2 RSASSA-PKCS1-v1_5", "5.2.2 RSAVP1", and "9.1 EMSA-PSS" in the
// following URL:
// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
// also, see SSHRSA.c (rsa2_verifysig) in PuTTy's source.
if ($s->compare(new BigInteger()) < 0 || $s->compare($n->subtract(new BigInteger(1))) > 0) {
user_error('Invalid signature');
return $this->_disconnect(NET_SSH2_DISCONNECT_KEY_EXCHANGE_FAILED);
}
$s = $s->modPow($e, $n);
$s = $s->toBytes();
$h = pack('N4H*', 0x302130, 0x906052b, 0xe03021a, 0x5000414, sha1($this->exchange_hash));
//.........这里部分代码省略.........
示例5: createKey
//.........这里部分代码省略.........
openssl_pkey_export($rsa, $privatekey, null, $config);
$publickey = openssl_pkey_get_details($rsa);
$publickey = $publickey['key'];
$privatekey = call_user_func_array(array($this, '_convertPrivateKey'), array_values($this->_parseKey($privatekey, CRYPT_RSA_PRIVATE_FORMAT_PKCS1)));
$publickey = call_user_func_array(array($this, '_convertPublicKey'), array_values($this->_parseKey($publickey, CRYPT_RSA_PUBLIC_FORMAT_PKCS1)));
// clear the buffer of error strings stemming from a minimalistic openssl.cnf
while (openssl_error_string() !== false) {
}
return array('privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false);
}
static $e;
if (!isset($e)) {
$e = new BigInteger(CRYPT_RSA_EXPONENT);
}
extract($this->_generateMinMax($bits));
$absoluteMin = $min;
$temp = $bits >> 1;
// divide by two to see how many bits P and Q would be
if ($temp > CRYPT_RSA_SMALLEST_PRIME) {
$num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME);
$temp = CRYPT_RSA_SMALLEST_PRIME;
} else {
$num_primes = 2;
}
extract($this->_generateMinMax($temp + $bits % $temp));
$finalMax = $max;
extract($this->_generateMinMax($temp));
$generator = new BigInteger();
$n = $this->one->copy();
if (!empty($partial)) {
extract(unserialize($partial));
} else {
$exponents = $coefficients = $primes = array();
$lcm = array('top' => $this->one->copy(), 'bottom' => false);
}
$start = time();
$i0 = count($primes) + 1;
do {
for ($i = $i0; $i <= $num_primes; $i++) {
if ($timeout !== false) {
$timeout -= time() - $start;
$start = time();
if ($timeout <= 0) {
return array('privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents)));
}
}
if ($i == $num_primes) {
list($min, $temp) = $absoluteMin->divide($n);
if (!$temp->equals($this->zero)) {
$min = $min->add($this->one);
// ie. ceil()
}
$primes[$i] = $generator->randomPrime($min, $finalMax, $timeout);
} else {
$primes[$i] = $generator->randomPrime($min, $max, $timeout);
}
if ($primes[$i] === false) {
// if we've reached the timeout
if (count($primes) > 1) {
$partialkey = '';
} else {
array_pop($primes);
$partialkey = serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents));
}
return array('privatekey' => '', 'publickey' => '', 'partialkey' => $partialkey);
}
// the first coefficient is calculated differently from the rest
// ie. instead of being $primes[1]->modInverse($primes[2]), it's $primes[2]->modInverse($primes[1])
if ($i > 2) {
$coefficients[$i] = $n->modInverse($primes[$i]);
}
$n = $n->multiply($primes[$i]);
$temp = $primes[$i]->subtract($this->one);
// textbook RSA implementations use Euler's totient function instead of the least common multiple.
// see http://en.wikipedia.org/wiki/Euler%27s_totient_function
$lcm['top'] = $lcm['top']->multiply($temp);
$lcm['bottom'] = $lcm['bottom'] === false ? $temp : $lcm['bottom']->gcd($temp);
$exponents[$i] = $e->modInverse($temp);
}
list($temp) = $lcm['top']->divide($lcm['bottom']);
$gcd = $temp->gcd($e);
$i0 = 1;
} while (!$gcd->equals($this->one));
$d = $e->modInverse($temp);
$coefficients[2] = $primes[2]->modInverse($primes[1]);
// from <http://tools.ietf.org/html/rfc3447#appendix-A.1.2>:
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER, -- n
// publicExponent INTEGER, -- e
// privateExponent INTEGER, -- d
// prime1 INTEGER, -- p
// prime2 INTEGER, -- q
// exponent1 INTEGER, -- d mod (p-1)
// exponent2 INTEGER, -- d mod (q-1)
// coefficient INTEGER, -- (inverse of q) mod p
// otherPrimeInfos OtherPrimeInfos OPTIONAL
// }
return array('privatekey' => $this->_convertPrivateKey($n, $e, $d, $primes, $exponents, $coefficients), 'publickey' => $this->_convertPublicKey($n, $e), 'partialkey' => false);
}
示例6: verify
/**
* DSA verify.
*
* @param string $message Message.
* @param string $hash_alg Hash algorithm.
* @param \phpseclib\Math\BigInteger $r r.
* @param \phpseclib\Math\BigInteger $s s.
*
* @return bool True if verified.
*/
public function verify($message, $hash_alg, $r, $s)
{
$hash = new Crypt\Hash($hash_alg);
$hash_m = new BigInteger($hash->hash($message), 256);
$g = new BigInteger($this->_key->key['g'], 256);
$p = new BigInteger($this->_key->key['p'], 256);
$q = new BigInteger($this->_key->key['q'], 256);
$y = new BigInteger($this->_key->key['y'], 256);
$w = $s->modInverse($q);
$hash_m_mul = $hash_m->multiply($w);
$u1_base = $hash_m_mul->divide($q);
$u1 = $u1_base[1];
$r_mul = $r->multiply($w);
$u2_base = $r_mul->divide($q);
$u2 = $u2_base[1];
$g_pow = $g->modPow($u1, $p);
$y_pow = $y->modPow($u2, $p);
$g_pow_mul = $g_pow->multiply($y_pow);
$g_pow_mul_mod_base = $g_pow_mul->divide($p);
$g_pow_mul_mod = $g_pow_mul_mod_base[1];
$v_base = $g_pow_mul_mod->divide($q);
$v = $v_base[1];
return $v->compare($r) == 0;
}
示例7: createKey
//.........这里部分代码省略.........
$e = new BigInteger(CRYPT_RSA_EXPONENT);
}
extract(self::_generateMinMax($bits));
$absoluteMin = $min;
$temp = $bits >> 1;
// divide by two to see how many bits P and Q would be
if ($temp > CRYPT_RSA_SMALLEST_PRIME) {
$num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME);
$temp = CRYPT_RSA_SMALLEST_PRIME;
} else {
$num_primes = 2;
}
extract(self::_generateMinMax($temp + $bits % $temp));
$finalMax = $max;
extract(self::_generateMinMax($temp));
$n = clone self::$one;
if (!empty($partial)) {
extract(unserialize($partial));
} else {
$exponents = $coefficients = $primes = array();
$lcm = array('top' => clone self::$one, 'bottom' => false);
}
$start = time();
$i0 = count($primes) + 1;
do {
for ($i = $i0; $i <= $num_primes; $i++) {
if ($timeout !== false) {
$timeout -= time() - $start;
$start = time();
if ($timeout <= 0) {
return array('privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents)));
}
}
if ($i == $num_primes) {
list($min, $temp) = $absoluteMin->divide($n);
if (!$temp->equals(self::$zero)) {
$min = $min->add(self::$one);
// ie. ceil()
}
$primes[$i] = BigInteger::randomPrime($min, $finalMax, $timeout);
} else {
$primes[$i] = BigInteger::randomPrime($min, $max, $timeout);
}
if ($primes[$i] === false) {
// if we've reached the timeout
if (count($primes) > 1) {
$partialkey = '';
} else {
array_pop($primes);
$partialkey = serialize(array('primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents));
}
return array('privatekey' => false, 'publickey' => false, 'partialkey' => $partialkey);
}
// the first coefficient is calculated differently from the rest
// ie. instead of being $primes[1]->modInverse($primes[2]), it's $primes[2]->modInverse($primes[1])
if ($i > 2) {
$coefficients[$i] = $n->modInverse($primes[$i]);
}
$n = $n->multiply($primes[$i]);
$temp = $primes[$i]->subtract(self::$one);
// textbook RSA implementations use Euler's totient function instead of the least common multiple.
// see http://en.wikipedia.org/wiki/Euler%27s_totient_function
$lcm['top'] = $lcm['top']->multiply($temp);
$lcm['bottom'] = $lcm['bottom'] === false ? $temp : $lcm['bottom']->gcd($temp);
$exponents[$i] = $e->modInverse($temp);
}
list($temp) = $lcm['top']->divide($lcm['bottom']);
$gcd = $temp->gcd($e);
$i0 = 1;
} while (!$gcd->equals(self::$one));
$d = $e->modInverse($temp);
$coefficients[2] = $primes[2]->modInverse($primes[1]);
// from <http://tools.ietf.org/html/rfc3447#appendix-A.1.2>:
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER, -- n
// publicExponent INTEGER, -- e
// privateExponent INTEGER, -- d
// prime1 INTEGER, -- p
// prime2 INTEGER, -- q
// exponent1 INTEGER, -- d mod (p-1)
// exponent2 INTEGER, -- d mod (q-1)
// coefficient INTEGER, -- (inverse of q) mod p
// otherPrimeInfos OtherPrimeInfos OPTIONAL
// }
$privatekey = new RSA();
$privatekey->modulus = $n;
$privatekey->k = $bits >> 3;
$privatekey->publicExponent = $e;
$privatekey->exponent = $d;
$privatekey->privateExponent = $e;
$privatekey->primes = $primes;
$privatekey->exponents = $exponents;
$privatekey->coefficients = $coefficients;
$publickey = new RSA();
$publickey->modulus = $n;
$publickey->k = $bits >> 3;
$publickey->exponent = $e;
return array('privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false);
}