本文整理汇总了Java中weka.filters.unsupervised.attribute.Remove.setAttributeIndices方法的典型用法代码示例。如果您正苦于以下问题:Java Remove.setAttributeIndices方法的具体用法?Java Remove.setAttributeIndices怎么用?Java Remove.setAttributeIndices使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.filters.unsupervised.attribute.Remove
的用法示例。
在下文中一共展示了Remove.setAttributeIndices方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: buildFilteredClassifier
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
public void buildFilteredClassifier(){
rf = new RandomForest();
Remove rm = new Remove();
rm.setAttributeIndices("1");
FilteredClassifier fc = new FilteredClassifier();
fc.setFilter(rm);
fc.setClassifier(rf);
try{
fc.buildClassifier(weather);
for (int i = 0; i < weather.numInstances(); i++){
double pred = fc.classifyInstance(weather.instance(i));
System.out.print("given value: " + weather.classAttribute().value((int) weather.instance(i).classValue()));
System.out.println("---predicted value: " + weather.classAttribute().value((int) pred));
}
} catch (Exception e) {
}
}
示例2: testScoreWithClassifierSomeMissingFields
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
@Test
public void testScoreWithClassifierSomeMissingFields() throws Exception {
Instances train = new Instances(new BufferedReader(new StringReader(
CorrelationMatrixMapTaskTest.IRIS)));
train.setClassIndex(train.numAttributes() - 1);
NaiveBayes bayes = new NaiveBayes();
bayes.buildClassifier(train);
WekaScoringMapTask task = new WekaScoringMapTask();
Remove r = new Remove();
r.setAttributeIndices("1");
r.setInputFormat(train);
Instances test = Filter.useFilter(train, r);
task.setModel(bayes, train, test);
assertTrue(task.getMissingMismatchAttributeInfo().length() > 0);
assertTrue(task.getMissingMismatchAttributeInfo().equals(
"sepallength missing from incoming data\n"));
assertEquals(3, task.getPredictionLabels().size());
for (int i = 0; i < test.numInstances(); i++) {
assertEquals(3, task.processInstance(test.instance(i)).length);
}
}
示例3: classify
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Classifies function wise test instances in the associated with the names labels mentioned in the arraylist passed as the argument.
*
* @param list - labels of instances contained in the test set that need to be classified.
* @return TreeMap containing the instance labels and the associated classification results.
* @throws ClassificationFailedException
*/
@Override
public LinkedHashMap<String, String> classify(LinkedList<String> list) throws ClassificationFailedException {
output = new LinkedHashMap<String, String>();
J48 j48 = new J48();
Remove rm = new Remove();
rm.setAttributeIndices("1");
FilteredClassifier fc = new FilteredClassifier();
fc.setFilter(rm);
fc.setClassifier(j48);
try {
fc.buildClassifier(trainSet);
for (int i = 0; i < testSet.numInstances(); i++) {
double pred = fc.classifyInstance(testSet.instance(i));
if (list.isEmpty()) {
output.put(String.valueOf(i + 1), testSet.classAttribute().value((int) pred));
} else {
output.put(list.get(i), testSet.classAttribute().value((int) pred));
}
}
} catch (Exception ex) {
throw new ClassificationFailedException();
}
return output;
}
示例4: buildClusteredSeries
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
private List<Series<Number, Number>> buildClusteredSeries() throws Exception {
List<XYChart.Series<Number, Number>> clusteredSeries = new ArrayList<>();
// to build the cluster we remove the class information
Remove remove = new Remove();
remove.setAttributeIndices("3");
remove.setInputFormat(data);
Instances dataToBeClustered = Filter.useFilter(data, remove);
SimpleKMeans kmeans = new SimpleKMeans();
kmeans.setSeed(10);
kmeans.setPreserveInstancesOrder(true);
kmeans.setNumClusters(3);
kmeans.buildClusterer(dataToBeClustered);
IntStream.range(0, 3).mapToObj(i -> {
Series<Number, Number> newSeries = new XYChart.Series<>();
newSeries.setName(String.valueOf(i));
return newSeries;
}).forEach(clusteredSeries::add);
int[] assignments = kmeans.getAssignments();
for (int i = 0; i < assignments.length; i++) {
int clusterNum = assignments[i];
clusteredSeries.get(clusterNum).getData().add(instancetoChartData(data.get(i)));
}
return clusteredSeries;
}
示例5: stripSummaryAtts
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Utility method that returns a header Instances object without any summary
* attributes.
*
* @param insts the header to remove summary attributes from
* @return a new Instances object that does not contain any summary attributes
* @throws DistributedWekaException if a problem occurs
*/
public static Instances stripSummaryAtts(Instances insts)
throws DistributedWekaException {
int startOfSummary = 0;
for (int i = 0; i < insts.numAttributes(); i++) {
if (insts.attribute(i).name()
.startsWith(CSVToARFFHeaderMapTask.ARFF_SUMMARY_ATTRIBUTE_PREFIX)) {
startOfSummary = i + 1;
break;
}
}
if (startOfSummary > 0) {
Remove r = new Remove();
r.setAttributeIndices("" + startOfSummary + "-" + "last");
try {
r.setInputFormat(insts);
insts = Filter.useFilter(insts, r);
} catch (Exception ex) {
throw new DistributedWekaException(ex);
}
}
return insts;
}
示例6: removeClass
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
private Instances removeClass(Instances inst) {
Remove af = new Remove();
Instances retI = null;
try {
if (inst.classIndex() < 0) {
retI = inst;
} else {
af.setAttributeIndices("" + (inst.classIndex() + 1));
af.setInvertSelection(false);
af.setInputFormat(inst);
retI = Filter.useFilter(inst, af);
}
} catch (Exception e) {
e.printStackTrace();
}
return retI;
}
示例7: setUp
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
protected void setUp() throws Exception {
super.setUp();
Instances temp = new Instances(m_Instances);
for (int j = 0; j < 2; j++) {
for (int i = 0; i < temp.numInstances(); i++) {
m_Instances.add(temp.instance(i));
}
}
// now just filter the instances to convert String attributes
// and binarize nominal attributes
StringToNominal stn = new StringToNominal();
stn.setAttributeRange("first-last");
stn.setInputFormat(m_Instances);
m_Instances = Filter.useFilter(m_Instances, stn);
NominalToBinary ntb = new NominalToBinary();
ntb.setInputFormat(m_Instances);
m_Instances = Filter.useFilter(m_Instances, ntb);
// remove the last column (date attribute)
Remove r = new Remove();
r.setAttributeIndices("last");
r.setInputFormat(m_Instances);
m_Instances = Filter.useFilter(m_Instances, r);
}
示例8: removeLabels
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Remove Indices - Remove ALL labels (assume they are the first L attributes) from D.
* @param D Dataset
* @param L number of labels
* @return New dataset with labels removed.
*/
public static Instances removeLabels(Instances D, int L) throws Exception {
Remove remove = new Remove();
remove.setAttributeIndices("1-"+L);
remove.setInputFormat(D);
return Filter.useFilter(D, remove);
}
示例9: classify
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Classifies whole program test instances,
*
* @return String containing the classification result of the evaluated program's dataset.
* @throws ClassificationFailedException
*/
@Override
public Object classify() throws ClassificationFailedException {
J48 j48 = new J48();
Remove rm = new Remove();
String output = null;
rm.setAttributeIndices("1");
FilteredClassifier fc = new FilteredClassifier();
fc.setFilter(rm);
fc.setClassifier(j48);
try {
fc.buildClassifier(trainSet);
this.treeModel = j48.toString();
double pred = fc.classifyInstance(testSet.instance(0));
output = testSet.classAttribute().value((int) pred);
classificationResult = output;
} catch (Exception ex) {
throw new ClassificationFailedException();
}
return output;
}
示例10: classify
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Classifies Timesliced test data instances.
*
* @return Resulting linked list with timelsiced classification results.
* @throws ClassificationFailedException
*/
@Override
public Object classify() throws ClassificationFailedException {
output = new LinkedList<String>();
J48 j48 = new J48();
Remove rm = new Remove();
rm.setAttributeIndices("1");
FilteredClassifier fc = new FilteredClassifier();
fc.setFilter(rm);
fc.setClassifier(j48);
try {
fc.buildClassifier(trainSet);
for (int i = 0; i < testSet.numInstances(); i++) {
//System.out.println(testSet.instance(i));
double pred = fc.classifyInstance(testSet.instance(i));
output.add(testSet.classAttribute().value((int) pred));
}
} catch (Exception ex) {
System.out.println(ex.toString());
throw new ClassificationFailedException();
}
return output;
}
示例11: generateClassToCluster
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
public void generateClassToCluster(){
Remove filter = new Remove();
filter.setAttributeIndices("" + (weather.classIndex() + 1));
try {
filter.setInputFormat(weather);
Instances dataClusterer = Filter.useFilter(weather, filter);
clusterer = new EM();
clusterer.buildClusterer(dataClusterer);
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(clusterer);
eval.evaluateClusterer(weather);
System.out.println(eval.clusterResultsToString());
} catch (Exception e) {
}
}
示例12: buildClusterer
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Builds the clusters
*/
private void buildClusterer() throws Exception {
if (m_trainingSet.classIndex() < 0) {
m_Clusterer.buildClusterer(m_trainingSet);
} else { // class based evaluation if class attribute is set
Remove removeClass = new Remove();
removeClass.setAttributeIndices("" + (m_trainingSet.classIndex() + 1));
removeClass.setInvertSelection(false);
removeClass.setInputFormat(m_trainingSet);
Instances clusterTrain = Filter.useFilter(m_trainingSet, removeClass);
m_Clusterer.buildClusterer(clusterTrain);
}
}
示例13: applyRemoveFilter
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Remove desired attribute from Weka data
* @param data weka data from which attribute is to be removed
* @param attriId ID in Weka of attribute to be removed
* @return data after desired attribute is removed
* @throws Exception
*/
private static Instances applyRemoveFilter(Instances data, String attriId) throws Exception {
Remove keepAttributes = new Remove();
keepAttributes.setAttributeIndices(attriId+ ","+ Integer.toString(data.numAttributes() - 1) + ",last");
keepAttributes.setInvertSelection(true);
keepAttributes.setInputFormat(data);
data = Filter.useFilter(data, keepAttributes);
System.out.println("RemoveFilter applied.");
return data;
}
示例14: buildClusterer
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
/**
* Builds the clusters
*/
private void buildClusterer() throws Exception {
if(m_trainingSet.classIndex() < 0)
m_Clusterer.buildClusterer(m_trainingSet);
else{ //class based evaluation if class attribute is set
Remove removeClass = new Remove();
removeClass.setAttributeIndices(""+(m_trainingSet.classIndex()+1));
removeClass.setInvertSelection(false);
removeClass.setInputFormat(m_trainingSet);
Instances clusterTrain = Filter.useFilter(m_trainingSet, removeClass);
m_Clusterer.buildClusterer(clusterTrain);
}
}
示例15: setUp
import weka.filters.unsupervised.attribute.Remove; //导入方法依赖的package包/类
protected void setUp() throws Exception {
m_Filter = getFilter();
m_Instances = new Instances(new BufferedReader(new InputStreamReader(ClassLoader.getSystemResourceAsStream("weka/filters/data/FilterTest.arff"))));
Remove r = new Remove();
r.setAttributeIndices("1, 2, 4, 5");
r.setInputFormat(m_Instances);
m_Instances = Filter.useFilter(m_Instances, r);
m_OptionTester = getOptionTester();
m_GOETester = getGOETester();
m_FilteredClassifier = null;
}