当前位置: 首页>>代码示例>>Java>>正文


Java Discretize.setUseBetterEncoding方法代码示例

本文整理汇总了Java中weka.filters.supervised.attribute.Discretize.setUseBetterEncoding方法的典型用法代码示例。如果您正苦于以下问题:Java Discretize.setUseBetterEncoding方法的具体用法?Java Discretize.setUseBetterEncoding怎么用?Java Discretize.setUseBetterEncoding使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在weka.filters.supervised.attribute.Discretize的用法示例。


在下文中一共展示了Discretize.setUseBetterEncoding方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: buildEvaluator

import weka.filters.supervised.attribute.Discretize; //导入方法依赖的package包/类
/**
 * Initializes a symmetrical uncertainty attribute evaluator. Discretizes all
 * attributes that are numeric.
 * 
 * @param data set of instances serving as training data
 * @throws Exception if the evaluator has not been generated successfully
 */
@Override
public void buildEvaluator(Instances data) throws Exception {

  // can evaluator handle data?
  getCapabilities().testWithFail(data);

  m_trainInstances = data;
  m_classIndex = m_trainInstances.classIndex();
  m_numInstances = m_trainInstances.numInstances();
  Discretize disTransform = new Discretize();
  disTransform.setUseBetterEncoding(true);
  disTransform.setInputFormat(m_trainInstances);
  m_trainInstances = Filter.useFilter(m_trainInstances, disTransform);
  m_numClasses = m_trainInstances.attribute(m_classIndex).numValues();
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:23,代码来源:SymmetricalUncertAttributeEval.java

示例2: buildEvaluator

import weka.filters.supervised.attribute.Discretize; //导入方法依赖的package包/类
/**
 * Initializes a gain ratio attribute evaluator. Discretizes all attributes
 * that are numeric.
 * 
 * @param data set of instances serving as training data
 * @throws Exception if the evaluator has not been generated successfully
 */
@Override
public void buildEvaluator(Instances data) throws Exception {

  // can evaluator handle data?
  getCapabilities().testWithFail(data);

  m_trainInstances = data;
  m_classIndex = m_trainInstances.classIndex();
  m_numInstances = m_trainInstances.numInstances();
  Discretize disTransform = new Discretize();
  disTransform.setUseBetterEncoding(true);
  disTransform.setInputFormat(m_trainInstances);
  m_trainInstances = Filter.useFilter(m_trainInstances, disTransform);
  m_numClasses = m_trainInstances.attribute(m_classIndex).numValues();
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:23,代码来源:GainRatioAttributeEval.java

示例3: buildEvaluator

import weka.filters.supervised.attribute.Discretize; //导入方法依赖的package包/类
/**
 * Initializes a symmetrical uncertainty attribute evaluator. 
 * Discretizes all attributes that are numeric.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully
 */
public void buildEvaluator (Instances data)
  throws Exception {

  // can evaluator handle data?
  getCapabilities().testWithFail(data);

  m_trainInstances = data;
  m_classIndex = m_trainInstances.classIndex();
  m_numAttribs = m_trainInstances.numAttributes();
  m_numInstances = m_trainInstances.numInstances();
  Discretize disTransform = new Discretize();
  disTransform.setUseBetterEncoding(true);
  disTransform.setInputFormat(m_trainInstances);
  m_trainInstances = Filter.useFilter(m_trainInstances, disTransform);
  m_numClasses = m_trainInstances.attribute(m_classIndex).numValues();
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:25,代码来源:SymmetricalUncertAttributeEval.java

示例4: buildEvaluator

import weka.filters.supervised.attribute.Discretize; //导入方法依赖的package包/类
/**
 * Initializes a gain ratio attribute evaluator.
 * Discretizes all attributes that are numeric.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully
 */
public void buildEvaluator (Instances data)
  throws Exception {
  
  // can evaluator handle data?
  getCapabilities().testWithFail(data);

  m_trainInstances = data;
  m_classIndex = m_trainInstances.classIndex();
  m_numAttribs = m_trainInstances.numAttributes();
  m_numInstances = m_trainInstances.numInstances();
  Discretize disTransform = new Discretize();
  disTransform.setUseBetterEncoding(true);
  disTransform.setInputFormat(m_trainInstances);
  m_trainInstances = Filter.useFilter(m_trainInstances, disTransform);
  m_numClasses = m_trainInstances.attribute(m_classIndex).numValues();
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:25,代码来源:GainRatioAttributeEval.java

示例5: buildEvaluator

import weka.filters.supervised.attribute.Discretize; //导入方法依赖的package包/类
/**
 * Generates a attribute evaluator. Has to initialize all fields of the 
 * evaluator that are not being set via options.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully
 */
public void buildEvaluator (Instances data) throws Exception {
  
  // can evaluator handle data?
  getCapabilities().testWithFail(data);

  m_trainInstances = new Instances(data);
  m_trainInstances.deleteWithMissingClass();
  m_classIndex = m_trainInstances.classIndex();
  m_numAttribs = m_trainInstances.numAttributes();
  m_numInstances = m_trainInstances.numInstances();

  m_disTransform = new Discretize();
  m_disTransform.setUseBetterEncoding(true);
  m_disTransform.setInputFormat(m_trainInstances);
  m_trainInstances = Filter.useFilter(m_trainInstances, m_disTransform);
}
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:25,代码来源:ConsistencySubsetEval.java

示例6: buildEvaluator

import weka.filters.supervised.attribute.Discretize; //导入方法依赖的package包/类
/**
 * Generates a attribute evaluator. Has to initialize all fields of the 
 * evaluator that are not being set via options.
 *
 * CFS also discretises attributes (if necessary) and initializes
 * the correlation matrix.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully
 */
public void buildEvaluator (Instances data)
  throws Exception {

  // can evaluator handle data?
  getCapabilities().testWithFail(data);

  m_trainInstances = new Instances(data);
  m_trainInstances.deleteWithMissingClass();
  m_classIndex = m_trainInstances.classIndex();
  m_numAttribs = m_trainInstances.numAttributes();
  m_numInstances = m_trainInstances.numInstances();
  m_isNumeric = m_trainInstances.attribute(m_classIndex).isNumeric();

  if (!m_isNumeric) {
    m_disTransform = new Discretize();
    m_disTransform.setUseBetterEncoding(true);
    m_disTransform.setInputFormat(m_trainInstances);
    m_trainInstances = Filter.useFilter(m_trainInstances, m_disTransform);
  }

  m_std_devs = new double[m_numAttribs];
  m_corr_matrix = new float [m_numAttribs][];
  for (int i = 0; i < m_numAttribs; i++) {
    m_corr_matrix[i] = new float [i+1];
  }

  for (int i = 0; i < m_corr_matrix.length; i++) {
    m_corr_matrix[i][i] = 1.0f;
    m_std_devs[i] = 1.0;
  }

  for (int i = 0; i < m_numAttribs; i++) {
    for (int j = 0; j < m_corr_matrix[i].length - 1; j++) {
      m_corr_matrix[i][j] = -999;
    }
  }
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:49,代码来源:CfsSubsetEval.java


注:本文中的weka.filters.supervised.attribute.Discretize.setUseBetterEncoding方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。