本文整理汇总了Java中weka.core.SerializationHelper.read方法的典型用法代码示例。如果您正苦于以下问题:Java SerializationHelper.read方法的具体用法?Java SerializationHelper.read怎么用?Java SerializationHelper.read使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.core.SerializationHelper
的用法示例。
在下文中一共展示了SerializationHelper.read方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: initialise
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public static void initialise(String browserModelFilePath, String osModelFilePath, String fontsPath) throws Exception{
browserAttributes = new ArrayList<Attribute>();
osAttributes = new ArrayList<Attribute>();
browserClassAttribute = new Attribute("className", browserGroupsWeCareAbout);
osClassAttribute = new Attribute("className", osGroupsWeCareAbout);
browserAttributes.add(browserClassAttribute);
osAttributes.add(osClassAttribute);
for(int i = 1; i <= 5300; ++i){
browserAttributes.add(new Attribute(Integer.toString(i)));
osAttributes.add(new Attribute(Integer.toString(i)));
}
browserClassifier = (Classifier) SerializationHelper.read(browserModelFilePath);
osClassifier = (Classifier) SerializationHelper.read(osModelFilePath);
BrowserOsGuessFingerprintNumericRepresentation.initialise(fontsPath);
}
示例2: initModel
import weka.core.SerializationHelper; //导入方法依赖的package包/类
/**
* loads the serialized model if necessary, throws an Exception if the
* derserialization fails.
*
* @throws Exception if deserialization fails
*/
protected void initModel() throws Exception {
if (m_Model == null) {
m_Model = (Classifier) SerializationHelper.read(m_ModelFile
.getAbsolutePath());
}
}
示例3: loadClassificationModel
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public void loadClassificationModel(InputStream modelPath) throws BadConfigException {
try {
mClassifier = (Classifier) SerializationHelper.read(modelPath);
} catch (Exception e) {
throw new BadConfigException(e.getMessage());
} finally {
IOUtils.closeQuietly(modelPath);
}
}
示例4: initModel
import weka.core.SerializationHelper; //导入方法依赖的package包/类
/**
* loads the serialized model if necessary, throws an Exception if the
* derserialization fails. Always propagates the current debug flag.
*
* @throws Exception if deserialization fails
*/
protected void initModel() throws Exception {
if (m_Model == null)
m_Model = (Classifier) SerializationHelper.read(m_ModelFile.getAbsolutePath());
m_Model.setDebug(getDebug());
}
示例5: main
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.out.println("Usage: WekaSpeechActClassifier <train_set_input_file> <test_set_input_file>");
System.exit(0);
}
String arffFileTrain = args[0];
String arffFileTest = args[1];
LibSVM wekaClassifier = new LibSVM();
wekaClassifier.setOptions(new String[] {"-B", "-H"});
Instances preparedData = (Instances) SerializationHelper.read(arffFileTrain);
Instances preparedTest = (Instances) SerializationHelper.read(arffFileTest);
System.out.println("Reading train set and test set done!");
System.out.print("\nTraining...");
wekaClassifier.buildClassifier(preparedData);
System.out.println("\nTraining...done!");
Evaluation evalTrain = new Evaluation(preparedData);
evalTrain.evaluateModel(wekaClassifier, preparedData);
DecimalFormat formatter = new DecimalFormat("#0.0");
System.out.println("\nEvaluating on trainSet...");
System.out.println(evalTrain.toSummaryString());
System.out.println("\nResult on trainSet...");
System.out.println("Precision:" + formatter.format(100*evalTrain.precision(0)) + "%" +
" - Recal: " + formatter.format(100*evalTrain.recall(0)) + "%" +
" - F1: " + formatter.format(evalTrain.fMeasure(0)) + "%");
Evaluation eval = new Evaluation(preparedTest);
eval.evaluateModel(wekaClassifier, preparedTest);
System.out.println("\nEvaluating on testSet...");
System.out.println(eval.toSummaryString());
System.out.println("\nResult on testSet...");
System.out.println("Precision:" + formatter.format(100*eval.precision(0)) + "%" +
" - Recal: " + formatter.format(100*eval.recall(0)) + "%" +
" - F1: " + formatter.format(100*eval.fMeasure(0)) + "%");
System.out.println("True positive rate: " + formatter.format(100*eval.truePositiveRate(0)) + "%" +
" - True negative rate: " + formatter.format(100*eval.trueNegativeRate(0)) + "%");
System.out.println("Accuracy: " + formatter.format(100*((eval.truePositiveRate(0) + eval.trueNegativeRate(0)) / 2)) + "%");
System.out.println("\nDone!");
}
示例6: initialize
import weka.core.SerializationHelper; //导入方法依赖的package包/类
@Override
public boolean initialize() {
try {
cls_act = (Classifier) SerializationHelper.read(Environment.getExternalStorageDirectory().getAbsolutePath()
+ "/Android/data/tinygsn/" + fileName);
} catch (Exception e) {
return false;
}
return true;
}
示例7: readSC
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public MultilayerPerceptron readSC(String filename1, String filename2, String filename3,String filename4,String filename5) throws Exception
{
SCA = (BayesNet) SerializationHelper.read(filename1);
SCB = (MultilayerPerceptron) SerializationHelper.read(filename2);
SCC1 = (MultilayerPerceptron) SerializationHelper.read(filename3);
SCC2 = (MultilayerPerceptron) SerializationHelper.read(filename4);
SCC3 = (MultilayerPerceptron) SerializationHelper.read(filename5);
return SCC1;
}
示例8: readClassifier
import weka.core.SerializationHelper; //导入方法依赖的package包/类
/**
* Reads a serialized Classifier from file that is specified in the fox properties.
*/
public void readClassifier(final String lang) {
classifier = cache.get(lang);
if (classifier == null) {
final String name = getName(lang);
LOG.info("readClassifier: " + name);
try {
classifier = (Classifier) SerializationHelper.read(name.trim());
} catch (final Exception e) {
LOG.error(e.getLocalizedMessage(), e);
}
LOG.info("readClassifier done.");
cache.put(lang, classifier);
}
}
示例9: loadModel
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public static Classifier loadModel(String modelName, File folder) throws Exception {
File modelFile = FileSystemView.getFileSystemView().createFileObject(folder, modelName + ".model");
Classifier model = (Classifier) SerializationHelper.read(modelFile.getAbsolutePath());
// System.out.println("A "+model.getClass().getSimpleName() +" model was loaded.");
return model;
}
示例10: processCollection
import weka.core.SerializationHelper; //导入方法依赖的package包/类
@Override
public void processCollection() {
String topic = this.parent.getTargetLocation().substring(this.parent.getTargetLocation().lastIndexOf("/") + 1);
// get extracted concepts and propositions
Extractor ex = this.parent.getPrevExtractor(this);
this.concepts = ex.getConcepts();
this.propositions = ex.getPropositions();
for (Concept c : this.concepts)
this.fixLemmas(c);
// group by same label
Map<Concept, ConceptGroup> groups = LemmaGrouper.group(this.concepts);
List<Concept> repConcepts = new ArrayList<Concept>(groups.keySet());
this.parent.log(this, "unique concepts: " + groups.size());
// build all pairs for classifier
List<CPair> pairs = this.buildPairs(repConcepts);
this.parent.log(this, "concept pairs: " + pairs.size());
// compute similarity features
Instances features = this.computeFeatures(pairs, topic);
// apply classifier
ObjectDoubleMap<CPair> predictions = new ObjectDoubleHashMap<CPair>(pairs.size());
try {
Classifier clf = (Classifier) SerializationHelper.read(modelName);
for (int i = 0; i < pairs.size(); i++) {
CPair pair = pairs.get(i);
Instance feat = features.instance(i);
double[] pred = clf.distributionForInstance(feat);
predictions.put(pair, pred[1]);
}
} catch (Exception e) {
e.printStackTrace();
}
// clustering
Set<List<Concept>> clusters = clusterer.createClusters(new HashSet<Concept>(repConcepts), predictions);
// create final cluster and update relations
this.updateDataStructures(clusters, groups);
this.clusters = clusters;
this.parent.log(this, "grouped concepts: " + concepts.size());
this.parent.log(this, "relations: " + propositions.size());
}
示例11: main
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
String modelName = "models/wiki_scoring_noun10conjarg2_sim5log-gopt_SVMRankC10_RepDisc";
String modelFile = modelName + ".model";
FilteredClassifier clf = (FilteredClassifier) SerializationHelper.read(modelFile);
RankingSVM svm = new RankingSVM();
svm.setWeights(modelName + ".weights");
clf.setClassifier(svm);
System.out.println(clf);
SerializationHelper.write(modelName + ".model_new", clf);
}
示例12: initModel
import weka.core.SerializationHelper; //导入方法依赖的package包/类
private void initModel() throws Exception {
// Regex model
regexClassifierHighScore = getRegexs("ini/regex_high_score.txt");
regexClassifierMediumScore = getRegexs("ini/regex_medium_score.txt");
regexClassifierLowScore = getRegexs("ini/regex_low_score.txt");
// Open NLP classifier
DoccatModel m = new DoccatModel(new File("model/open_comments.model"));
openNLPClassifier = new DocumentCategorizerME(m);
// Weka NaiveBayes classifier
wekaNBClassifier = (Classifier) SerializationHelper.read(new FileInputStream("model/nb_comments.model"));
// Weka SGD Classifier
// wekaSGDClassifier = (Classifier) SerializationHelper.read(new
// FileInputStream("model/sgd_comments.model"));
// // Weka classifer J48
//wekaJ48Classifier = (Classifier) SerializationHelper.read(new FileInputStream("model/j48_comments.model"));
// // Weka SMO comments
// wekaSMOClassifier = (Classifier) SerializationHelper.read(new
// FileInputStream("model/smo_comments.model"));
// This needs to be removed, only used to copy the structure when
// classifing
wekaARFF = getInstancesFromARFF("model/comments.arff");
wekaARFF.setClassIndex(wekaARFF.numAttributes() - 1);
// ObjectInputStream oin = new ObjectInputStream(new FileInputStream("model/StringToWordVector.filter"));
// filter = (StringToWordVector) oin.readObject();
// oin.close();
// filter.setInputFormat(wekaARFF);
//
// Instances trainFiltered = Filter.useFilter(wekaARFF, filter);
// trainFiltered.setClassIndex(0);
//System.out.println(filter);
}
示例13: init
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public final void init(String paramsFilename, String modelFilename, int startIndex, FeatureType featureType, Mode mode)
{
try
{
// load featureExtractor
if(featureExtractor == null)
featureExtractor = new ExtractLengthPredictionFeatures(paramsFilename, featureType, startIndex);
this.numberOfAttributes = featureExtractor.getVectorLength();
this.featureType = featureType;
this.modelFilename = modelFilename;
// load weka model (test mode)
if(mode == Mode.test)
model = (Classifier) SerializationHelper.read(modelFilename);
// create host dataset
String[] header = featureExtractor.getHeader().split(",");
ArrayList<Attribute> attrs = new ArrayList<>(header.length);
for(Feature feature : featureExtractor.getFeatures())
{
switch(featureType)
{
case values: // treat nominal values (if they exist) differently
{
switch(feature.getType())
{
case NUM: attrs.add(new Attribute(feature.getName())); break;
case CAT: attrs.add(new Attribute(feature.getName(),
feature.getValues())); break;
}
} break;
case counts: case binary: default: attrs.add(new Attribute(feature.getName()));
} // switch
} // for
dataset = new Instances("pred", attrs, 1);
dataset.setClassIndex(numberOfAttributes);
}
catch(Exception e)
{
e.printStackTrace();
}
}
示例14: convert
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public void convert() throws Exception {
if( ! new File( getInputModel() ).exists() ) {
throw new FileNotFoundException( "Input model " + getInputModel() + " does not exist!");
}
if( ! new File( getScriptPath() ).exists() ) {
throw new FileNotFoundException( "Python script " + getScriptPath() + " does not exist!");
}
PyScriptClassifier cls = (PyScriptClassifier) SerializationHelper.read( getInputModel() );
System.err.println( cls.getModelString() + "\nCurrent script path: " +
cls.getPythonFile().getAbsolutePath() );
System.err.println("Changing script path to: " + getScriptPath() );
cls.setPythonFile( new File( getScriptPath() ) );
SerializationHelper.write( getOutputModel(), cls);
}
示例15: readRC
import weka.core.SerializationHelper; //导入方法依赖的package包/类
public CostSensitiveClassifier readRC(String filename) throws Exception
{
RC = (CostSensitiveClassifier) SerializationHelper.read(filename);
return RC;
}