本文整理汇总了Java中weka.core.Instances.numClasses方法的典型用法代码示例。如果您正苦于以下问题:Java Instances.numClasses方法的具体用法?Java Instances.numClasses怎么用?Java Instances.numClasses使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.core.Instances
的用法示例。
在下文中一共展示了Instances.numClasses方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: predictDataDistribution
import weka.core.Instances; //导入方法依赖的package包/类
protected double[][] predictDataDistribution(Instances unlabeled) throws Exception {
// set class attribute
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
// distribution for instance
double[][] dist = new double[unlabeled.numInstances()][unlabeled.numClasses()];
// label instances
for (int i = 0; i < unlabeled.numInstances(); i++) {
// System.out.println("debug: "+this.getClass().getName()+": classifier: "+m_Classifier.toString());
LibSVM libsvm = (LibSVM) m_Classifier;
libsvm.setProbabilityEstimates(true);
double[] instanceDist = libsvm.distributionForInstance(unlabeled.instance(i));
dist[i] = instanceDist;
}
return dist;
}
示例2: orderByLargestClass
import weka.core.Instances; //导入方法依赖的package包/类
/**
* Reorder the dataset by its largest class
* @param data
* @return
*/
public static Instances orderByLargestClass(Instances data) {
Instances newData = new Instances(data, data.numInstances());
// get the number of class in the data
int nbClass = data.numClasses();
int[] instancePerClass = new int[nbClass];
int[] labels = new int[nbClass];
int[] classIndex = new int[nbClass];
// sort the data base on its class
data.sort(data.classAttribute());
// get the number of instances per class in the data
for (int i = 0; i < nbClass; i++) {
instancePerClass[i] = data.attributeStats(data.classIndex()).nominalCounts[i];
labels[i] = i;
if (i > 0)
classIndex[i] = classIndex[i-1] + instancePerClass[i-1];
}
QuickSort.sort(instancePerClass, labels);
for (int i = nbClass-1; i >=0 ; i--) {
for (int j = 0; j < instancePerClass[i]; j++) {
newData.add(data.instance(classIndex[labels[i]] + j));
}
}
return newData;
}
示例3: buildClassifier
import weka.core.Instances; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
// Initialise training dataset
Attribute classAttribute = data.classAttribute();
classedData = new HashMap<>();
classedDataIndices = new HashMap<>();
for (int c = 0; c < data.numClasses(); c++) {
classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
}
train = new SymbolicSequence[data.numInstances()];
classMap = new String[train.length];
maxLength = 0;
for (int i = 0; i < train.length; i++) {
Instance sample = data.instance(i);
MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
maxLength = Math.max(maxLength, sequence.length);
int shift = (sample.classIndex() == 0) ? 1 : 0;
for (int t = 0; t < sequence.length; t++) {
sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
}
train[i] = new SymbolicSequence(sequence);
String clas = sample.stringValue(classAttribute);
classMap[i] = clas;
classedData.get(clas).add(train[i]);
classedDataIndices.get(clas).add(i);
}
warpingMatrix = new double[maxLength][maxLength];
U = new double[maxLength];
L = new double[maxLength];
maxWindow = Math.round(1 * maxLength);
searchResults = new String[maxWindow+1];
nns = new int[maxWindow+1][train.length];
dist = new double[train.length][train.length];
// Start searching for the best window
searchBestWarpingWindow();
// Saving best windows found
System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
示例4: buildClassifier
import weka.core.Instances; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
// Initialise training dataset
Attribute classAttribute = data.classAttribute();
classedData = new HashMap<>();
classedDataIndices = new HashMap<>();
for (int c = 0; c < data.numClasses(); c++) {
classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
}
train = new SymbolicSequence[data.numInstances()];
classMap = new String[train.length];
maxLength = 0;
for (int i = 0; i < train.length; i++) {
Instance sample = data.instance(i);
MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
maxLength = Math.max(maxLength, sequence.length);
int shift = (sample.classIndex() == 0) ? 1 : 0;
for (int t = 0; t < sequence.length; t++) {
sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
}
train[i] = new SymbolicSequence(sequence);
String clas = sample.stringValue(classAttribute);
classMap[i] = clas;
classedData.get(clas).add(train[i]);
classedDataIndices.get(clas).add(i);
}
warpingMatrix = new double[maxLength][maxLength];
U = new double[maxLength];
L = new double[maxLength];
U1 = new double[maxLength];
L1 = new double[maxLength];
maxWindow = Math.round(1 * maxLength);
searchResults = new String[maxWindow+1];
nns = new int[maxWindow+1][train.length];
dist = new double[maxWindow+1][train.length];
cache = new SequenceStatsCache(train, maxWindow);
lazyUCR = new LazyAssessNNEarlyAbandon[train.length][train.length];
for (int i = 0; i < train.length; i++) {
for (int j = 0; j < train.length; j++) {
lazyUCR[i][j] = new LazyAssessNNEarlyAbandon(cache);
}
}
// Start searching for the best window
searchBestWarpingWindow();
// Saving best windows found
System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
示例5: buildClassifier
import weka.core.Instances; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
// Initialise training dataset
Attribute classAttribute = data.classAttribute();
classedData = new HashMap<>();
classedDataIndices = new HashMap<>();
for (int c = 0; c < data.numClasses(); c++) {
classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
}
train = new SymbolicSequence[data.numInstances()];
classMap = new String[train.length];
maxLength = 0;
for (int i = 0; i < train.length; i++) {
Instance sample = data.instance(i);
MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
maxLength = Math.max(maxLength, sequence.length);
int shift = (sample.classIndex() == 0) ? 1 : 0;
for (int t = 0; t < sequence.length; t++) {
sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
}
train[i] = new SymbolicSequence(sequence);
String clas = sample.stringValue(classAttribute);
classMap[i] = clas;
classedData.get(clas).add(train[i]);
classedDataIndices.get(clas).add(i);
}
warpingMatrix = new double[maxLength][maxLength];
U = new double[maxLength];
L = new double[maxLength];
U1 = new double[maxLength];
L1 = new double[maxLength];
maxWindow = Math.round(1 * maxLength);
searchResults = new String[maxWindow+1];
nns = new int[maxWindow+1][train.length];
dist = new double[train.length][train.length];
cache = new SequenceStatsCache(train, maxWindow);
lazyUCR = new LazyAssessNNEarlyAbandon[train.length][train.length];
for (int i = 0; i < train.length; i++) {
for (int j = 0; j < train.length; j++) {
lazyUCR[i][j] = new LazyAssessNNEarlyAbandon(cache);
}
}
// Start searching for the best window
searchBestWarpingWindow();
// Saving best windows found
System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
示例6: buildClassifier
import weka.core.Instances; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
// Initialise training dataset
Attribute classAttribute = data.classAttribute();
classedData = new HashMap<>();
classedDataIndices = new HashMap<>();
for (int c = 0; c < data.numClasses(); c++) {
classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
}
train = new SymbolicSequence[data.numInstances()];
classMap = new String[train.length];
maxLength = 0;
for (int i = 0; i < train.length; i++) {
Instance sample = data.instance(i);
MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
maxLength = Math.max(maxLength, sequence.length);
int shift = (sample.classIndex() == 0) ? 1 : 0;
for (int t = 0; t < sequence.length; t++) {
sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
}
train[i] = new SymbolicSequence(sequence);
String clas = sample.stringValue(classAttribute);
classMap[i] = clas;
classedData.get(clas).add(train[i]);
classedDataIndices.get(clas).add(i);
}
warpingMatrix = new double[maxLength][maxLength];
U = new double[maxLength];
L = new double[maxLength];
maxWindow = Math.round(1 * maxLength);
searchResults = new String[maxWindow+1];
nns = new int[maxWindow+1][train.length];
dist = new double[maxWindow+1][train.length];
// Start searching for the best window
searchBestWarpingWindow();
// Saving best windows found
System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
示例7: orderByCompactClass
import weka.core.Instances; //导入方法依赖的package包/类
/**
* Reorder the data by compactness of each class using Euclidean distance
* @param data
* @return
*/
public static Instances orderByCompactClass(Instances data) {
Instances newData = new Instances(data, data.numInstances());
// get the number of class in the data
int nbClass = data.numClasses();
int[] instancePerClass = new int[nbClass];
int[] labels = new int[nbClass];
int[] classIndex = new int[nbClass];
double[] compactness = new double[nbClass];
// sort the data base on its class
data.sort(data.classAttribute());
int start = 0;
// get the number of instances per class in the data
for (int i = 0; i < nbClass; i++) {
instancePerClass[i] = data.attributeStats(data.classIndex()).nominalCounts[i];
labels[i] = i;
if (i > 0)
classIndex[i] = classIndex[i-1] + instancePerClass[i-1];
int end = start + instancePerClass[i];
int counter = 0;
double[][] dataPerClass = new double[instancePerClass[i]][data.numAttributes()-1];
for (int j = start; j < end; j++) {
dataPerClass[counter++] = data.instance(j).toDoubleArray();
}
double[] mean = arithmeticMean(dataPerClass);
double d = 0;
for (int j = 0; j < instancePerClass[i]; j++) {
double temp = euclideanDistance(mean, dataPerClass[j]);
temp *= temp;
temp -= (mean[0] - dataPerClass[j][0]) * (mean[0] - dataPerClass[j][0]);
d += temp;
}
compactness[i] = d / instancePerClass[i];
start = end;
}
QuickSort.sort(compactness, labels);
for (int i = nbClass-1; i >=0 ; i--) {
for (int j = 0; j < instancePerClass[labels[i]]; j++) {
newData.add(data.instance(classIndex[labels[i]] + j));
}
}
return newData;
}