当前位置: 首页>>代码示例>>Java>>正文


Java Instance.stringValue方法代码示例

本文整理汇总了Java中weka.core.Instance.stringValue方法的典型用法代码示例。如果您正苦于以下问题:Java Instance.stringValue方法的具体用法?Java Instance.stringValue怎么用?Java Instance.stringValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在weka.core.Instance的用法示例。


在下文中一共展示了Instance.stringValue方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testTransactionLookup

import weka.core.Instance; //导入方法依赖的package包/类
/**
     * testTransactionLookup
     */
    @Test
    public void testTransactionLookup() throws Exception {
        int txn_id_idx = FeatureExtractor.TXNID_ATTRIBUTE_IDX;
        assertEquals(workload.getTransactionCount(), data.numInstances());
        List<TransactionTrace> txns = new ArrayList<TransactionTrace>(workload.getTransactions());
//        System.err.println(StringUtil.join("\n", txns));
//        System.err.println();
        for (int i = 0, cnt = data.numInstances(); i < cnt; i++) {
            Instance inst = data.instance(i);
            assertNotNull(inst);
            
            String value = inst.stringValue(txn_id_idx);
//            System.err.println("VALUE:    " + value);
            Long txn_id = Long.valueOf(value);
            assertNotNull(txn_id);
            
            TransactionTrace txn_trace = workload.getTransaction(txn_id);
            TransactionTrace expected = txns.get(i);
//            System.err.println("EXPECTED: " + expected.getTransactionId());
//            System.err.println("FOUND:    " + txn_id);
            
            assertNotNull(String.format("[%05d] Failed to txn #%d", i, txn_id), txn_trace);
            assertEquals(expected.getTransactionId(), txn_trace.getTransactionId());
        } // FOR
    }
 
开发者ID:s-store,项目名称:sstore-soft,代码行数:29,代码来源:TestFeatureExtractor.java

示例2: buildClassifier

import weka.core.Instance; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
   	// Initialise training dataset
	Attribute classAttribute = data.classAttribute();
	
	classedData = new HashMap<>();
	classedDataIndices = new HashMap<>();
	for (int c = 0; c < data.numClasses(); c++) {
		classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
		classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
	}

	train = new SymbolicSequence[data.numInstances()];
	classMap = new String[train.length];
	maxLength = 0;
	for (int i = 0; i < train.length; i++) {
		Instance sample = data.instance(i);
		MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
		maxLength = Math.max(maxLength, sequence.length);
		int shift = (sample.classIndex() == 0) ? 1 : 0;
		for (int t = 0; t < sequence.length; t++) {
			sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
		}
		train[i] = new SymbolicSequence(sequence);
		String clas = sample.stringValue(classAttribute);
		classMap[i] = clas;
		classedData.get(clas).add(train[i]);
		classedDataIndices.get(clas).add(i);
	}
	warpingMatrix = new double[maxLength][maxLength];	
	U = new double[maxLength];
	L = new double[maxLength];
	
	maxWindow = Math.round(1 * maxLength);
	searchResults = new String[maxWindow+1];
	nns = new int[maxWindow+1][train.length];
	dist = new double[train.length][train.length];
	
	// Start searching for the best window
	searchBestWarpingWindow();
	
	// Saving best windows found
	System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
 
开发者ID:ChangWeiTan,项目名称:FastWWSearch,代码行数:45,代码来源:LbKeoghPrunedDTW.java

示例3: buildClassifier

import weka.core.Instance; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
   	// Initialise training dataset
   	Attribute classAttribute = data.classAttribute();
	
	classedData = new HashMap<>();
	classedDataIndices = new HashMap<>();
	for (int c = 0; c < data.numClasses(); c++) {
		classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
		classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
	}

	train = new SymbolicSequence[data.numInstances()];
	classMap = new String[train.length];
	maxLength = 0;
	for (int i = 0; i < train.length; i++) {
		Instance sample = data.instance(i);
		MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
		maxLength = Math.max(maxLength, sequence.length);
		int shift = (sample.classIndex() == 0) ? 1 : 0;
		for (int t = 0; t < sequence.length; t++) {
			sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
		}
		train[i] = new SymbolicSequence(sequence);
		String clas = sample.stringValue(classAttribute);
		classMap[i] = clas;
		classedData.get(clas).add(train[i]);
		classedDataIndices.get(clas).add(i);
	}
			
	warpingMatrix = new double[maxLength][maxLength];
	U = new double[maxLength];
	L = new double[maxLength];
	U1 = new double[maxLength];
	L1 = new double[maxLength];
	
	maxWindow = Math.round(1 * maxLength);
	searchResults = new String[maxWindow+1];
	nns = new int[maxWindow+1][train.length];
	dist = new double[maxWindow+1][train.length];

	cache = new SequenceStatsCache(train, maxWindow);
	
	lazyUCR = new LazyAssessNNEarlyAbandon[train.length][train.length];
	
	for (int i = 0; i < train.length; i++) {
		for (int j  = 0; j < train.length; j++) {
			lazyUCR[i][j] = new LazyAssessNNEarlyAbandon(cache);
		}
	}
	
	// Start searching for the best window
	searchBestWarpingWindow();
	
	// Saving best windows found
	System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
 
开发者ID:ChangWeiTan,项目名称:FastWWSearch,代码行数:58,代码来源:UCRSuite.java

示例4: buildClassifier

import weka.core.Instance; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
   	// Initialise training dataset
	Attribute classAttribute = data.classAttribute();
	
	classedData = new HashMap<>();
	classedDataIndices = new HashMap<>();
	for (int c = 0; c < data.numClasses(); c++) {
		classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
		classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
	}

	train = new SymbolicSequence[data.numInstances()];
	classMap = new String[train.length];
	maxLength = 0;
	for (int i = 0; i < train.length; i++) {
		Instance sample = data.instance(i);
		MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
		maxLength = Math.max(maxLength, sequence.length);
		int shift = (sample.classIndex() == 0) ? 1 : 0;
		for (int t = 0; t < sequence.length; t++) {
			sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
		}
		train[i] = new SymbolicSequence(sequence);
		String clas = sample.stringValue(classAttribute);
		classMap[i] = clas;
		classedData.get(clas).add(train[i]);
		classedDataIndices.get(clas).add(i);
	}
			
	warpingMatrix = new double[maxLength][maxLength];
	U = new double[maxLength];
	L = new double[maxLength];
	U1 = new double[maxLength];
	L1 = new double[maxLength];
	
	maxWindow = Math.round(1 * maxLength);
	searchResults = new String[maxWindow+1];
	nns = new int[maxWindow+1][train.length];
	dist = new double[train.length][train.length];

	cache = new SequenceStatsCache(train, maxWindow);
	
	lazyUCR = new LazyAssessNNEarlyAbandon[train.length][train.length];
	
	for (int i = 0; i < train.length; i++) {
		for (int j  = 0; j < train.length; j++) {
			lazyUCR[i][j] = new LazyAssessNNEarlyAbandon(cache);
		}
	}
	
	// Start searching for the best window
	searchBestWarpingWindow();

	// Saving best windows found
	System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
 
开发者ID:ChangWeiTan,项目名称:FastWWSearch,代码行数:58,代码来源:UCRSuitePrunedDTW.java

示例5: buildClassifier

import weka.core.Instance; //导入方法依赖的package包/类
@Override
public void buildClassifier(Instances data) throws Exception {
   	// Initialise training dataset
	Attribute classAttribute = data.classAttribute();
	
	classedData = new HashMap<>();
	classedDataIndices = new HashMap<>();
	for (int c = 0; c < data.numClasses(); c++) {
		classedData.put(data.classAttribute().value(c), new ArrayList<SymbolicSequence>());
		classedDataIndices.put(data.classAttribute().value(c), new ArrayList<Integer>());
	}

	train = new SymbolicSequence[data.numInstances()];
	classMap = new String[train.length];
	maxLength = 0;
	for (int i = 0; i < train.length; i++) {
		Instance sample = data.instance(i);
		MonoDoubleItemSet[] sequence = new MonoDoubleItemSet[sample.numAttributes() - 1];
		maxLength = Math.max(maxLength, sequence.length);
		int shift = (sample.classIndex() == 0) ? 1 : 0;
		for (int t = 0; t < sequence.length; t++) {
			sequence[t] = new MonoDoubleItemSet(sample.value(t + shift));
		}
		train[i] = new SymbolicSequence(sequence);
		String clas = sample.stringValue(classAttribute);
		classMap[i] = clas;
		classedData.get(clas).add(train[i]);
		classedDataIndices.get(clas).add(i);
	}
	
	warpingMatrix = new double[maxLength][maxLength];
	U = new double[maxLength];
	L = new double[maxLength];
	
	maxWindow = Math.round(1 * maxLength);
	searchResults = new String[maxWindow+1];
	nns = new int[maxWindow+1][train.length];
	dist = new double[maxWindow+1][train.length];
	
	// Start searching for the best window
	searchBestWarpingWindow();
	
	// Saving best windows found
	System.out.println("Windows found=" + bestWarpingWindow + " Best Acc=" + (1-bestScore));
}
 
开发者ID:ChangWeiTan,项目名称:FastWWSearch,代码行数:46,代码来源:WindowSearcher.java


注:本文中的weka.core.Instance.stringValue方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。